• Title/Summary/Keyword: 의견 마이닝

Search Result 132, Processing Time 0.026 seconds

A Study on Social media Opinion Mining based Enterprise Crisis Management (소셜 미디어 오피니언 마이닝에 기반한 기업의 위기관리에 관한 연구)

  • Cha, Seun-Joon;Kang, Jae-Woo;Choi, Jae-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.142-144
    • /
    • 2012
  • 소셜 미디어가 확산되고 사용자가 증가하면서, 사용자들은 소셜 미디어를 통해 의견을 공유한다. 소셜 미디어는 실시간 정보에 대한 전달이 빠르며 데이터를 수집, 분석할 수 있다. 오피니언 마이닝은 텍스트로부터 사용자의 의견이 포함된 패턴을 추출하여 특정 제품이나 서비스에 대한 의견의 긍정, 부정 표현의 정도를 측정한다. 본 논문에서는 오피니언 마이닝을 기반으로 소셜 미디어 데이터에서 기업의 제품, 서비스와 관련된 사용자의 의견을 분석하여 긍정, 부정인지를 판단한다. 그리고 부정 패턴의 빈도를 통해 기업의 위기 상황을 인지하며, 위기 대응을 위한 4단계의 위기관리 모델을 제시한다. 또한 소셜 미디어에서 기업의 위기관리 사례를 확인하고, 표본조사를 통하여 평가 및 분석을 수행한다. 이 모델을 이용하여 방대한 소셜 미디어 데이터에서 기업의 제품이나 서비스에 대한 부정적 의견을 초기에 감지하고, 체계적으로 대응 할 수 있다.

Analysis of limitations using only adjectives sentiment word dictionary (형용사만을 사용한 의견어 사전의 한계점 분석)

  • Yu, WonHui;Ji, Hye-Seong;Yang, Yeong-Uk;Lim, HeuiSeok
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.373-375
    • /
    • 2011
  • 최근 많은 연구가 되고 있는 오피니언 마이닝은 의견어 사전의 구축이 가장 기본적으로 선행되어야 하는 연구이다. 오피니언 마이닝의 의견어 사전 구축 연구는 영어를 중심으로 많은 연구가 진행 되었다. 하지만 형용사 위주의 의견어 사전 구축으로 많은 부분의 문제들이 해결되는 영어에 비해서 한국어는 여러 가지 품사와 문장구조를 고려하여 의견어 사전을 구축해야한다. 이것을 실험으로 밝히기 위하여 형용사로만 구성되어진 의견어 사전을 구축하고 영화평에 적용하여 분석해 봄으로써 형용사로만 구성되어진 의견어 사전의 한계점을 확인한다. 실험은 세종계획 말뭉치에서 나타나는 형용사로 구성된 의견어 사전을 구축하고 네이버 랩에서 제공하는 영화평을 형용사로 구성된 의견어 사전으로 의견 분석하여 시행하였다. 분석 결과 재현율 약 50%, 정확률 약 60%정도의 성능을 보였다.

Friend Recommendation System Using Opinion Mining (오피니언 마이닝을 이용한 친구 추천 시스템)

  • Hwang, Su-Jin;Yoon, Jae-Yeol;Kim, Iee-Joon;Kim, Ung-Mo
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.1188-1190
    • /
    • 2011
  • 오피니언 마이닝은 웹에 있는 문서를 분석하여 작성자의 의견을 요약된 형태로 보여주는 기술이다. 오피니언 마이닝을 이용해 문서 작성자의 주관적 의견을 알 수 있고 이를 통해 작성자의 성향이나 관심사와 같은 정보를 얻을 수 있다. 많은 네티즌들은 소셜 네트워크 서비스를 통해 자신의 의견이 담긴 글을 타인과 공유 하며 네트워크상의 인맥을 넓혀 나간다. 오피니언 마이닝을 통해 개인이 작성한 글들을 분석하여 관심사를 파악하고 비슷한 관심사를 가진 친구를 추천하는 친구 추천 시스템을 제안한다.

Expansion of Opinion Mining based on Entity Association Network Model (개체연관망 모델에 의한 오피니언마이닝의 확장)

  • Kim, Keun-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.18D no.4
    • /
    • pp.237-244
    • /
    • 2011
  • Opinion Mining summarizes with classifying sensitive opinions of customers in huge online customer reviews for the attributes of products or services by positive and negative opinions. Because the customers represent their interests through subjective opinions as well as objective facts, the existing opinion mining techniques, which can analyze just the sensitive opinions, need to be expanded.. In this paper, We propose the novel entity association network model which expands the existing opinion mining techniques. The entity association model can not only represent positive and negative degree of the sensitive opinions, but also can represent the degree of the associations and relative importances between entities. We designed and implemented the customer reviews analysis system based on the entity association network model. We recognized that the system can represent more abundant information than the existing opinion mining techniques.

A Sentiment Classification Method Using Context Information in Product Review Summarization (상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.254-262
    • /
    • 2009
  • As the trend of e-business activities develop, customers come into contact with products through on-line shopping sites and lots of customers refer product reviews before the purchasing on-line. However, as the volume of product reviews grow, it takes a great deal of time and effort for customers to read and evaluate voluminous product reviews. Lately, attention is being paid to Opinion Mining(OM) as one of the effective solutions to this problem. In this paper, we propose an efficient method for opinion sentiment classification of product reviews using product specific context information of words occurred in the reviews. We define the context information of words and propose the application of context for sentiment classification and we show the performance of our method through the experiments. Additionally, in case of word corpus construction, we propose the method to construct word corpus automatically using the review texts and review scores in order to prevent traditional manual process. In consequence, we can easily get exact sentiment polarities of opinion words in product reviews.

A Study on Extracting Ideas from Documents and Webpages in the Field of Idea Mining (아이디어 마이닝 분야에서 문헌과 웹페이지의 아이디어 발췌에 대한 연구)

  • Lee, Tae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.1
    • /
    • pp.25-43
    • /
    • 2012
  • The ideas and quasi-ideas useful for human's creation were drawn out from documents and webpages with extraction methods used in idea mining, opinion mining, and topic signal mining. The extraction methods comprised (1) decisive cue phrases, (2) cue figures and sounds, (3) contextual signals, and (4) discourse segmentations, They tested on the idea samples, such as thoughts, plans, opinions, writings, figures, sounds, and formulas. Methods (1), (3), and (4) received largely positive evaluation, judging the efficiency of 4 methods by F measure, a mixture of recall and precision ratio. In particular, decisive cue phrase method was effective to search idea and contextual signal method was effective to detect quasi-idea.

A Comparison of Text Mining Algorithms for Product Review Analysis (상품 리뷰 분석을 위한 텍스트 마이닝 기법의 비교)

  • Lee, Ji-Woong;Jin, Young-Taek
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.882-884
    • /
    • 2019
  • 오늘날 정보화 시대에서는 온라인 쇼핑의 상품리뷰 등 대용량의 텍스트 문서가 존재하며 제품에 대한 정서적인 의견뿐만 아니라 제품 선호도 및 상품 비교와 같은 유용한 정보를 제공한다. 본 논문에서는 사용자가 작성한 상품 리뷰로부터 제품의 특성을 비교하는 비교의견을 추출하기 위해 적용한 다양한 텍스트 마이닝 기법의 비교 결과를 제시한다.

Study on the social issue sentiment classification using text mining (텍스트마이닝을 이용한 사회 이슈 찬반 분류에 관한 연구)

  • Kang, Sun-A;Kim, Yoo Sin;Choi, Sang Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1167-1173
    • /
    • 2015
  • The development of information and communication technology like SNS, blogs, and bulletin boards, was provided a variety of places where you can express your thoughts and comments and allowing Big Data to grow, many people reveal the opinion of the social issues in SNS such as Twitter. In this study, we would like to pre-built sentimental dictionary about social issues and conduct a sentimental analysis with structured dictionary, to gather opinions on social issues that are created on twitter. The data that I used is "bikini", "nakkomsu" including tweet. As the result of analysis, precision is 61% and F1- score is 74%. This study expect to suggest the standard of dictionary construction allowing you to classify positive/negative opinion on specific social issues.

A Study on Web Mining System for Real-Time Monitoring of Opinion Information Based on Web 2.0 (의견정보 모니터링을 위한 웹 마이닝 시스템에 관한 연구)

  • Joo, Hae-Jong;Hong, Bong-Hwa;Jeong, Bok-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.149-157
    • /
    • 2010
  • As the use of the Internet has recently increased, the demand for opinion information posted on the Internet has grown. However, such resources only exist on the website. People who want to search for information on the Internet find it inconvenient to visit each website. This paper focuses on the opinion information extraction and analysis system through Web mining that is based on statistics collected from Web contents. That is, users' opinion information which is scattered across several websites can be automatically analyzed and extracted. The system provides the opinion information search service that enables users to search for real-time positive and negative opinions and check their statistics. Also, users can do real-time search and monitoring about other opinion information by putting keywords in the system. Proposed technologies proved to have outstanding capabilities in comparison to existing ones through tests. The capabilities to extract positive and negative opinion information were assessed. Specifically, test movie review sentence testing data was tested and its results were analyzed.

Study on Effective Extraction of New Coined Vocabulary from Political Domain Article and News Comment (정치 도메인에서 신조어휘의 효과적인 추출 및 의미 분석에 대한 연구)

  • Lee, Jihyun;Kim, Jaehong;Cho, Yesung;Lee, Mingu;Choi, Hyebong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • Text mining is one of the useful tools to discover public opinion and perception regarding political issues from big data. It is very common that users of social media express their opinion with newly-coined words such as slang and emoji. However, those new words are not effectively captured by traditional text mining methods that process text data using a language dictionary. In this study, we propose effective methods to extract newly-coined words that connote the political stance and opinion of users. With various text mining techniques, I attempt to discover the context and the political meaning of the new words.