• Title/Summary/Keyword: 음악지능

Search Result 122, Processing Time 0.022 seconds

A Study on the Utilization of Online Contents Subscription Services : Focusing on Digital Literacy, Purchase Tendencies, Personality Types, and Contents Consumption Experience (온라인 콘텐츠 구독 서비스 이용에 대한 연구: 디지털 리터러시, 제품 구매 성향, 성격 유형, 이용 경험을 중심으로)

  • Lim, Ji-an;Sung, WookJoon
    • Informatization Policy
    • /
    • v.31 no.2
    • /
    • pp.105-132
    • /
    • 2024
  • This study seeks to investigate the factors influencing the utilization of online contents subscription services. In this study, the current number of online contents services subscribed to is set as the dependent variable. The independent variables include conspicuous product purchasing tendencies, personality types, experience with online contents consumption, and digital literacy. The research results indicate that digital literacy, agreeableness, and sociability among personality traits, as well as experience with online contents consumption, significantly impact the use of online contents subscription services. However, conspicuous product purchasing tendencies and personality traits such as openness and extroversion did not have a significant effect on the utilization of online contents subscription services.

Social Network Analysis for New Product Recommendation (신상품 추천을 위한 사회연결망분석의 활용)

  • Cho, Yoon-Ho;Bang, Joung-Hae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.183-200
    • /
    • 2009
  • Collaborative Filtering is one of the most used recommender systems. However, basically it cannot be used to recommend new products to customers because it finds products only based on the purchasing history of each customer. In order to cope with this shortcoming, many researchers have proposed the hybrid recommender system, which is a combination of collaborative filtering and content-based filtering. Content-based filtering recommends the products whose attributes are similar to those of the products that the target customers prefer. However, the hybrid method is used only for the limited categories of products such as music and movie, which are the products whose attributes are easily extracted. Therefore it is essential to find a more effective approach to recommend to customers new products in any category. In this study, we propose a new recommendation method which applies centrality concept widely used to analyze the relational and structural characteristics in social network analysis. The new products are recommended to the customers who are highly likely to buy the products, based on the analysis of the relationships among products by using centrality. The recommendation process consists of following four steps; purchase similarity analysis, product network construction, centrality analysis, and new product recommendation. In order to evaluate the performance of this proposed method, sales data from H department store, one of the well.known department stores in Korea, is used.

  • PDF

Recommending Talks at International Research Conferences (국제학술대회 참가자들을 위한 정보추천 서비스)

  • Lee, Danielle H.
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.13-34
    • /
    • 2012
  • The Paper Explores The Problem Of Recommending Talks To Attend At International Research Conferences. When Researchers Participate In Conferences, Finding Interesting Talks To Attend Is A Real Challenge. Given That Several Presentation Sessions And Social Activities Are Typically Held At A Time, And There Is Little Time To Analyze All Alternatives, It Is Easy To Miss Important Talks. In Addition, Compared With Recommendations Of Products Such As Movies, Books, Music, Etc. The Recipients Of Talk Recommendations (i.e. Conference Attendees) Already Formed Their Own Research Community On The Center Of The Conference Topics. Hence, Recommending Conference Talks Contains Highly Social Context. This Study Suggests That This Domain Would Be Suitable For Social Network-Based Recommendations. In Order To Find Out The Most Effective Recommendation Approach, Three Sources Of Information Were Explored For Talk Recommendation-Whateach Talk Is About (Content), Who Scheduled The Talks (Collaborative), And How The Users Are Connected Socially (Social). Using These Three Sources Of Information, This Paper Examined Several Direct And Hybrid Recommendation Algorithms To Help Users Find Interesting Talks More Easily. Using A Dataset Of A Conference Scheduling System, Conference Navigator, Multiple Approaches Ranging From Classic Content-Based And Collaborative Filtering Recommendations To Social Network-Based Recommendations Were Compared. As The Result, For Cold-Start Users Who Have Insufficient Number Of Items To Express Their Preferences, The Recommendations Based On Their Social Networks Generated The Best Suggestions.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

Research on Computer-Based Convergence Performing Arts - The Impact of Digital Technology on the Performing Arts-

  • Jin-hee gong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.99-107
    • /
    • 2024
  • This study analyzed how computer-based digital technology affects convergence performing arts according to the trend of the times of domestic performing arts. Based on the analyzed contents, the purpose of the study was to propose an appropriate use plan for performing arts and technology and a plan for future development of convergence performing arts. Looking at the analysis results according to the purpose of the study, as a first step, the use of video technology developed in the performing arts stage using video technology evolved into holograms, media art, and 3D techniques. In the second step, technology and art were fused using artificial intelligence and robots. Artificial intelligence composed music, choreographed dance, and wrote a play script. In addition, robots performed and played with humans on stage. Third, virtual space was also used in performing arts. It was possible to direct spaces in various places using virtual spaces rather than performance halls and stage spaces. In this way, performing arts using digital technology will become more diverse and professional, and things that are possible in imagination that cross boundaries will be developed into reality. This study proposes a convergence that appropriately utilizes various technologies of digital and computer while maintaining the area of creation that humans can do and the expressiveness and artistry they express. In preparation for these changes in the times, future convergence performing artists should be able to acquire a combination of artistry and technology of stage technology experts who can use digital technology, professional actors who can express artistry along with AI, and professionals who can create art by manipulating AI.

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

A PRELIMINARY STUDY OF CHILDREN WITH LEARNING DISORDER IN KOREA (한국에서의 학습장애 아동에 대한 예비적 연구 - 종합병원 학습장애 특수 클리닉 내원 아동을 중심으로 -)

  • Kim, Seung-Tai;Kim, Ji-Hae;Hong, Sung-Do;Joung, Yoo-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.7 no.2
    • /
    • pp.247-257
    • /
    • 1996
  • This is a preliminary report on the first segment of a continuing and prospective teaming disorder study project in Korea. Study subjects were 197 children, aged between 6 and 15 referred for psychiatric evaluation of scholastic problems. Demographic data, psychiatric diagnoses and intelligence and achievement test results were reviewed and analyzed. Analyses of data lead to the following conclusions : (1) About 20.8% of children referred for scholastic problems were diagnosed of teaming disorder(LD). The most prevalent diagnosis among these children with scholastic problem was emotional disorder, especially depressive disorder(33%), (2) The comorbid rate of attention deficit/hyperactivity disorder(ADHD) of 41 children with LD was 44%, (3) Male/female ratio was 5.8:1 among all of the LD children, 17:1 among children with LD and ADHD and 3.6:l among children with LD but without ADHD, (4) 83% of children with LD scored above middle level on socioeconomic status(SES), (5) Age, SES, IQ, family psychiatric history, past history of medical and psychiatric illness, onset of age, pattern of peer relationship, number of friends, presence of adaptation problem and academic achievements of children with LD and ADHD compared to those of children with LD but without ADHD. No significant differences between two groups were found on age, SES, IQ, family psychiatric history, past history of medical and psychiatric illness, pattern of peer relationship, number of friends and presence of adaptation problem. However, there were significant differences in academic achievements of Korean language total, speaking and listening score, arithmetic score, social science score and music score of children with LD and ADHD compared to those of children with LD but without ADHD. Also there was an ealier onset of age in LD and ADHD group when compared to LD but without ADHD group.

  • PDF

SAAnnot-C3Pap: Ground Truth Collection Technique of Playing Posture Using Semi Automatic Annotation Method (SAAnnot-C3Pap: 반자동 주석화 방법을 적용한 연주 자세의 그라운드 트루스 수집 기법)

  • Park, So-Hyun;Kim, Seo-Yeon;Park, Young-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.409-418
    • /
    • 2022
  • In this paper, we propose SAAnnot-C3Pap, a semi-automatic annotation method for obtaining ground truth of a player's posture. In order to obtain ground truth about the two-dimensional joint position in the existing music domain, openpose, a two-dimensional posture estimation method, was used or manually labeled. However, automatic annotation methods such as the existing openpose have the disadvantages of showing inaccurate results even though they are fast. Therefore, this paper proposes SAAnnot-C3Pap, a semi-automated annotation method that is a compromise between the two. The proposed approach consists of three main steps: extracting postures using openpose, correcting the parts with errors among the extracted parts using supervisely, and then analyzing the results of openpose and supervisely. Perform the synchronization process. Through the proposed method, it was possible to correct the incorrect 2D joint position detection result that occurred in the openpose, solve the problem of detecting two or more people, and obtain the ground truth in the playing posture. In the experiment, we compare and analyze the results of the semi-automated annotation method openpose and the SAAnnot-C3Pap proposed in this paper. As a result of comparison, the proposed method showed improvement of posture information incorrectly collected through openpose.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.