Kim, Donghyeon;Park, Yeeun;Moon, Juhyuk;Im, Yunkyung;Ko, Dongbeom;Kim, Jungjoon;Park, Jeongmin
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.5
/
pp.267-274
/
2018
This paper introduces a smart door system composed of security system and secretary system. As ratio of single households increase, the security of household became more important. Also already there were a lot of artificial intelligence secretary system based on voice called smart home technology. But It has limits. It can not work without user's requests. That mean it is not automatic. And the voice recognition depend on user's pronounce. Thus in this paper, we design and develop smart door system that is added function of security and secretary. That can inform users that there are outsider in front of their house in real time. Also that can speak information such as user's requirements, delivery and weather information using TTS. As a result they can prevent crimes and use convenient secretary system.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.5
/
pp.81-88
/
2010
In this paper, we proposed an automatic music/non-music signal discrimination system from broadcasting audio signal as a preliminary study of building a sound source monitoring system in real broadcasting environment. By reflecting human speech articulation characteristics, we used three simple time-domain features such as energy standard deviation, log energy standard deviation and log energy mean. Based on the experimental threshold values of each feature, we developed a rule-based algorithm to classify music portion of the input audio signal. For the verification of the proposed algorithm, actual FM broadcasting signal was recorded for 24 hours and used as source input audio signal. From the experimental results, the proposed system can effectively recognize music section with the accuracy of 96% and non-music section with that of 87%, where the performance is good enough to be used as a pre-process module for the a sound source monitoring system.
Conventional keyword spotting systems use the connected word recognition network consisted by keyword models and filler models in keyword spotting. This is why the system can not construct the language models of word appearance effectively for detecting keywords in large vocabulary continuous speech recognition system with large text data. In this paper to solve this problem, we propose a keyword spotting system using pseudo N-gram language model for detecting key-words and investigate the performance of the system upon the changes of the frequencies of appearances of both keywords and filler models. As the results, when the Unigram probability of keywords and filler models were set to 0.2, 0.8, the experimental results showed that CA (Correctly Accept for In-Vocabulary) and CR (Correctly Reject for Out-Of-Vocabulary) were 91.1% and 91.7% respectively, which means that our proposed system can get 14% of improved average CA-CR performance than conventional methods in ERR (Error Reduction Rate).
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.480-482
/
1998
최근, 멀티캐스트 기법을 사용하는 멀티미디어 응용 프로그램들이 인터넷에 등장하고 있다. 이들 응용 프로그램들의 성공 여부는 수신자들에게 전송되는 음성/영상의 품질에 의해 좌우된다. 인터넷은 응용프로그램의 QoS(Quality of Service) 에 대한 요구를 보장할 수 없기 때문에 멀티케스트 트래픽(multicast traffic)을 위하여 인터넷의 성능을 최대한 효율적으로 이용할 수 있도록 흐름제어에 대한 많은 연구가 진행되고 있다. 그 중 IVS(INRIA Video conferencing System)에서 제안한 멀티캐스트 트래픽 흐름제어 알고리즘은 수신자가 주기적으로 전달하는 RTCP 의 패킷손실 정보에 의해 송신자가 전송율을 조절하는 것이다. 그러나 이 알고리즘은 네트워크 상태가 무부하(unload)임에도 불구하고 느린 피드백으로 인하여 가용 네트워크 대역폭을 빠르게 파악하지 못하기 때문에, TCP트래픽과 경쟁 상태에서 네트워크 대역폭을 불공정(unfairness)하게 사용하게 되고 네트워크 상태에 알맞는 전송율을 결정하지 못한다. 본 논문에서는 더욱 공정하게 대역폭을 공유할 수 있고 전체 링크 이용율을 높이는 두 가지 기법을 제안한다. 첫째, 측정된 네트워크 혼잡상태에 따라 RTCP 피드백의 전송 빈도를 동적으로 조절하는 것이다. 둘째, TCP와 같이 전송율을 증가/감소시킴으로써 공정하게 네트워크를 공유하도록 하는 것이다. 본 논문에서는 이 두 가지 기법들이 TCP 트래픽에 영향을 주지 않고 또한 RTCP피드백의 양을 증가시키지 않으면서도 공정하게 네트워크 대역폭을 공유함으로써 링크의 이용율을 높일 수 있다는 것을 시뮬레이션을 통하여 보여준다.안 모니터링 기 능 등으로 조사되었다.도 멜-켑스트럼을 사용한 경우 67.5%, K-L계수를 사용한 경우 75.3%로 7.8%의 향상된 인식률을 보였으며 K-L계수와 회귀계수를 결합한 경우에서도 비교적 높은 인식률을 보여 숫자음에 대해서도 K-L계수의 유효성을 확인할 수 있었다..rc$ 구입할 때 중점적으로 살펴보는 사항은 신선도와 순수재래종 여부, 위생상태였다. 한편 소비자가 언제나 구입할 수 없다는 의견이 85.2%나 되어 원활한 공급과 시장조성이 아직 정착되지 않고 있었다. $\bigcirc$ 현재 유통되고 있는 재래종닭은 소비자 대부분이 잡종으로 인식하고 있었으며, 재래종과 일반육계와의 구별은 깃털색, 피부색, 정강이색등 외관상으로 구별하고 있었다. 체중에 대한 반응은 너무 작다는 의견이었고, 식품으로의 인식도는 비교적 고급식품으로 인식하고 있다. $\bigcirc$ 재래종닭고기의 브랜드화에 대한 견해는 젊고 소득이 높은 계층에서 브랜드화의 필요성을 강조하고 있다. $\bigcirc$ 재래종달걀의 소비형태는 대부분의 소비자가 좋아하였으나 아직 먹어보지 못한 응답자가 많았다. 재래종달걀의 맛에 대해서는 고소하고 독특하여 차별성을 느끼고 있었다. $\bigcirc$ 재래종달걀의 구입장소는 계란판매점(축협.농협), 슈퍼, 백화점, 재래닭 사육 농장등 다양하였으며 포장단위는 10개를 가장 선호하였고, 포장재료는 종이, 플라스틱, 짚의 순으로 좋아하였다. $\bigcirc$ 달걀의 가격은 200원정도를 적정하다고 하였으며, 크기는 (평균 52g)는 가장 적당하다고
Korean banknotes are similar in size, and their braille tend to worn out as they get old. These characteristics of Korean banknotes make the blind people, who mainly rely on the braille, even harder to distinguish the banknotes. Not only that, this can even lead to economic loss. There are already existing systems for recognizing the banknotes, but they don't support Korean banknotes. Furthermore, because they are developed as a mobile application, it is not easy for the blind people to use the system. Therefore, in this paper, we develop a Raspberry Pi-based banknote recognition system that not only recognizes the Korean banknotes but also are easily accessible by the blind people. Our system starts recognition with a very simple action of the user, and the blind people can hear the recognition results by sound. In order to choose the best feature extraction algorithm that directly affects the performance of the system, we compare the performance of SIFT, SURF, and ORB, which are representative feature extraction algorithms at present, in real environments. Through experiments in various real environments, we adopted SIFT to implement our system, which showed the highest accuracy of 95%.
Hand-signal is an effective communication means in the situation where voice cannot be used for expression especially for soldiers. Vision-based approaches using cameras as input devices are widely suggested in the literature. However, these approaches are not suitable for soldiers that have unseen visions in many cases. in addition, existing special-glove approaches utilize the information of fingers only. Thus, they are still lack for soldiers' hand-signal recognition that involves not only finger motions, but also additional information such as the rotation of a hand. In this paper, we have designed and implemented a new recognition system for six military hand-signal motions, i. e., 'ready', 'move', quick move', 'crawl', 'stop', and 'lying-down'. For this purpose, we have proposed a finger-recognition method and motion-recognition methods. The finger-recognition method discriminate how much each finger is bended, i. e., 'completely flattened', 'slightly flattened', 'slightly bended', and 'completely bended'. The motion-recognition algorithms are based on the characterization of each hand-signal motion in terms of the three axes. Through repetitive experiments, our system have shown 91.2% of correct recognition.
Speech is much influenced by the existence of outliers which are introduced by such an unexpected happenings as additive background noise, change of speaker's utterance pattern and voice detection errors. These kinds of outliers may result in severe degradation of speaker recognition performance. In this paper, we proposed the GMM based on robust principal component analysis (RPCA-GMM) using M-estimation to solve the problems of both ouliers and high dimensionality of training feature vectors in speaker identification. Firstly, a new feature vector with reduced dimension is obtained by robust PCA obtained from M-estimation. The robust PCA transforms the original dimensional feature vector onto the reduced dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector. Secondly, the GMM with diagonal covariance matrix is obtained from these transformed feature vectors. We peformed speaker identification experiments to show the effectiveness of the proposed method. We compared the proposed method (RPCA-GMM) with transformed feature vectors to the PCA and the conventional GMM with diagonal matrix. Whenever the portion of outliers increases by every 2%, the proposed method maintains almost same speaker identification rate with 0.03% of little degradation, while the conventional GMM and the PCA shows much degradation of that by 0.65% and 0.55%, respectively This means that our method is more robust to the existence of outlier.
Various devices are connected to the Internet, and attacks using the Internet are occurring. Among such attacks, there are attacks that use malicious URLs to make users access to wrong phishing sites or distribute malicious viruses. Therefore, how to detect such malicious URL attacks is one of the important security issues. Among recent deep learning technologies, neural networks are showing good performance in image recognition, speech recognition, and pattern recognition. This neural network can be applied to research that analyzes and detects patterns of malicious URL characteristics. In this paper, performance analysis according to various parameters was performed on a method of detecting malicious URLs using neural networks. In this paper, malicious URL detection performance was analyzed while changing the activation function, learning rate, and neural network structure. The experimental data was crawled by Alexa top 1 million and Whois to build the data, and the machine learning library used TensorFlow. As a result of the experiment, when the number of layers is 4, the learning rate is 0.005, and the number of nodes in each layer is 100, the accuracy of 97.8% and the f1 score of 92.94% are obtained.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.157-163
/
2014
User's sensitivity is recognized as a very important parameter for communication between company, government and personnel. Especially in many studies, researchers use voice tone, voice speed, facial expression, moving direction and speed of body, and gestures to recognize the sensitivity. Multiplex modality is more precise than single modality however it has limited recognition rate and overload of data processing according to multi-sensing also an excellent algorithm is needed to deduce the sensing value. That is as each modality has different concept and property, errors might be happened to convert the human sensibility to standard values. To deal with this matter, the sensibility expression modality is needed to be extracted using technologies like analyzing of relational network, understanding of context and digital filter from multiplex modality. In specific situation to recognize the sensibility if the priority modality and other surrounding modalities are processed to implicit values, a robust system can be composed in comparison to the consuming of computer resource. As a result of this paper, it is proposed how to assign the weight of multiplex modality using implicit data.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.3
/
pp.357-362
/
2004
Language models are essential in predicting the next word in a spoken sentence, thereby enhancing the speech recognition accuracy, among other things. However, spoken language domains are too numerous, and therefore developers suffer from the lack of corpora with sufficient sizes. This paper proposes a method of combining two n-gram language models, one constructed from a very small corpus of the right domain of interest, the other constructed from a large but less adequate corpus, resulting in a significantly enhanced language model. This method is based on the observation that a small corpus from the right domain has high quality n-grams but has serious sparseness problem, while a large corpus from a different domain has more n-gram statistics but incorrectly biased. With our approach, two n-gram statistics are combined by extending the idea of Katz's backoff and therefore is called a dual-source backoff. We ran experiments with 3-gram language models constructed from newspaper corpora of several million to tens of million words together with models from smaller broadcast news corpora. The target domain was broadcast news. We obtained significant improvement (30%) by incorporating a small corpus around one thirtieth size of the newspaper corpus.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.