DOI QR코드

DOI QR Code

Development of a Raspberry Pi-based Banknote Recognition System for the Visually Impaired

시각장애인을 위한 라즈베리 파이 기반 지폐 인식기 개발

  • Lee, Jiwan (Division of Computer Science, Sookmyung Women's University) ;
  • Ahn, Jihoo (Division of Computer Science, Sookmyung Women's University) ;
  • Lee, Ki Yong (Research Institute of ICT Convergence & Division of Computer Science, Sookmyung Women's University)
  • Received : 2018.01.23
  • Accepted : 2018.04.07
  • Published : 2018.05.31

Abstract

Korean banknotes are similar in size, and their braille tend to worn out as they get old. These characteristics of Korean banknotes make the blind people, who mainly rely on the braille, even harder to distinguish the banknotes. Not only that, this can even lead to economic loss. There are already existing systems for recognizing the banknotes, but they don't support Korean banknotes. Furthermore, because they are developed as a mobile application, it is not easy for the blind people to use the system. Therefore, in this paper, we develop a Raspberry Pi-based banknote recognition system that not only recognizes the Korean banknotes but also are easily accessible by the blind people. Our system starts recognition with a very simple action of the user, and the blind people can hear the recognition results by sound. In order to choose the best feature extraction algorithm that directly affects the performance of the system, we compare the performance of SIFT, SURF, and ORB, which are representative feature extraction algorithms at present, in real environments. Through experiments in various real environments, we adopted SIFT to implement our system, which showed the highest accuracy of 95%.

한화 지폐는 그 크기들이 비슷하고 지폐가 오래되면 점자 부분이 마모된다. 이로 인해 촉각만을 이용해 지폐를 구분하는 시각장애인들은 한화 지폐를 인식하는데 어려움을 느끼며, 잘못된 인식으로 인해 경제적 손실을 입을 수도 있다. 지폐를 인식하는 유사 시스템은 이미 존재하나 기존 시스템은 한화 지폐를 인식하지 못하며, 모바일 애플리케이션으로 구현되어 있어 사실상 시각장애인들이 사용하기에 어렵다는 단점이 있다. 따라서 본 논문에서는 한화 지폐를 인식할 수 있으며, 시각장애인들이 사용하기에 편리한 라즈베리 파이 기반 지폐 인식기를 개발한다. 본 지폐 인식기는 간단한 동작만으로 인식을 시작하며 시각장애인들에게 음성으로 인식 결과를 알려준다. 특히 성능에 직접적인 영향을 미치는 특징 추출 알고리즘을 선택하기 위해 본 연구에서는 대표적인 특징 추출 알고리즘인 SIFT, SURF, ORB의 성능을 실제 비교하였다. 다양한 실제 환경에서의 실험을 통해, 본 논문에서는 95%의 인식률로 가장 좋은 정확도를 보이는 SIFT를 시스템 구현에 채택하였다.

Keywords

References

  1. Bay, H., Tuytelaars, T., and Van Gool, L., "Surf: Speeded up robust features," European conference on computer vision, Springer, Berlin, Heidelberg, 2006.
  2. Calonder, M., Lepetit, V., Strecha, C., and Fua, P., "Brief: Binary robust independent elementary features," European conference on computer vision, Springer, Berlin, Heidelberg, 2010.
  3. Collet, A., Berenson, D., Srinivasa, S. S., and Ferguson, D., "Object recognition and full pose registration from a single image for robotic manipulation," Robotics and Automation, 2009, ICRA'09. IEEE International Conference on IEEE, 2009.
  4. Diaz, A., "Through the Google goggles: Sociopolitical bias in search engine design," Web search. Springer, Berlin, Heidelberg, pp. 11-34, 2008.
  5. Harris, C. and Stephens, M., "A combined corner and edge detector," Alvey vision conference, Vol. 15, No. 50, pp. 147-151, 1988.
  6. Juan, L. and Oubong, G., "SURF applied in panorama image stitching," Image Processing Theory Tools and Applications (IPTA), 2010 2nd International Conference on IEEE, 2010.
  7. Karami, E., Prasad, S., and Shehata, M., "Image matching using SIFT, SURF, BRIEF and ORB: Performance comparison for distorted images," arXiv preprint arXiv:1710.02726, 2017.
  8. Korea Blind Union, "Visually impaired people are hard to distinguish bills," http://www.kbuwel.or.kr/Board/QNA/Detail?page=14&contentSeq=470237.
  9. Lindeberg, T., "Image matching using generalized scale-space interest points," International Conference on Scale Space and Variational Methods in Computer Vision, Springer, Berlin, Heidelberg, 2013.
  10. Lindeberg, T., "Scale-space theory: A basic tool for analyzing structures at different scales," Journal of applied statistics Vol. 21, No. 1-2, pp. 225-270, 1994. https://doi.org/10.1080/757582976
  11. Lowe, D. G., "Distinctive image features from scale-invariant keypoints," International journal of computer vision, Vol. 60, No. 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  12. Lowe, D. G., "Object recognition from local scale-invariant features," Computer vision, 1999. The proceedings of the seventh IEEE international conference on., Vol. 2. Ieee, 1999.
  13. Mikolajczyk, K. and Schmid, C., "An affine invariant interest point detector," European conference on computer vision, Springer, Berlin, Heidelberg, 2002.
  14. Panchal, P. M., Panchal, S. R., and Shah, S. K., "A comparison of SIFT and SURF," International Journal of Innovative Research in Computer and Communication Engineering, Vol. 1, No. 2, pp. 323-327, 2013.
  15. Rosten, E. and Drummond, T., "Machine learning for high-speed corner detection," European conference on computer vision. Springer, Berlin, Heidelberg, 2006.
  16. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., "ORB: An efficient alternative to SIFT or SURF," Computer Vision (ICCV), 2011 IEEE international conference on IEEE, 2011.
  17. Son, S. and Chun, J., "Product Feature Extraction and Rating Distribution Using User Reviews," Journal of Society for e-Business Studies, Vol. 22, No. 1, pp. 65-87, 2017. https://doi.org/10.7838/jsebs.2017.22.1.065
  18. Sudol, J., Dialameh, O., Blanchard, C., and Dorcey, T., "Looktel-A comprehensive platform for computer-aided visual assistance," Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on. IEEE, 2010.