Abstract
In this paper, we proposed an automatic music/non-music signal discrimination system from broadcasting audio signal as a preliminary study of building a sound source monitoring system in real broadcasting environment. By reflecting human speech articulation characteristics, we used three simple time-domain features such as energy standard deviation, log energy standard deviation and log energy mean. Based on the experimental threshold values of each feature, we developed a rule-based algorithm to classify music portion of the input audio signal. For the verification of the proposed algorithm, actual FM broadcasting signal was recorded for 24 hours and used as source input audio signal. From the experimental results, the proposed system can effectively recognize music section with the accuracy of 96% and non-music section with that of 87%, where the performance is good enough to be used as a pre-process module for the a sound source monitoring system.
본 논문에서는 실제 방송 환경에 적용 가능한 방송용 음원 모니터링 시스템을 구축하기 위한 사전연구로 방송 오디오 신호로부터 음악신호 구간을 자동으로 검출할 수 있는 시스템을 제안하였다. 음악구간과 비음악구간의 구분을 위한 특징으로는 사람의 음성 발화 특성을 반영하여 에너지 표준편차와 log 에너지 표준편차 그리고 log 에너지 평균 등 3개의 간단한 시간영역 특징들을 사용하였으며 최종 음악신호 구간 판별은 각 에너지 한계값(threshold)을 이용한 Rule-base 분류를 기반으로 하였다. 실제 FM 라디오 방송 신호를 24시간 녹음하여 진행한 모의실험에서 음악구간 인식률은 96%, 비-음악구간 인식률은 87%를 나타내어 방송용 음원 모니터링 시스템의 전처리기로 손색이 없음을 확인할 수 있었다.