본 연구에서는 열처리된 석유계 잔사유(pyrolysis fuel oil)부터 얻어진 탄소 전구체(피치)를 탄화시켜 소프트 카본을 제조하였다. 세 종류의 탄소 전구체는 3903($390^{\circ}C$, 3 h), 4001($400^{\circ}C$, 1 h), 4002($400^{\circ}C$, 2 h) 열 반응에 의해 준비되었다. 제조된 소프트 카본 음극소재의 입도를 $25{\sim}35{\mu}m$로 균일하게 한 후 붕산 첨가량을 달리하여 열처리를 통해 붕산 처리된 소프트 카본을 얻었다. 붕산처리를 통해 제조된 소프트 카본의 물리적 특성을 확인하기 위하여 XRD, FE-SEM, XPS 분석을 실시하였다. 또한 $LiPF_6$ (EC : DMC=1:1 vol%+VC 3wt%) 전해질을 사용하여 충 방전, 율속, 순환 전압 전류 시험, 임피던스 등과 같은 전기화학적 테스트를 수행하여 붕산 처리된 소프트 카본 음극 소재의 성능을 조사하였다. $25{\sim}35{\mu}m$의 입도를 가지는 3903 소프트 카본($H_3BO_3$/Pitch=3:100 중량비)을 이용한 전지의 용량 및 초기 효율은 330 mAh/g, 82%로 다른 합성물보다 우수한 결과를 보였다. 또한 2C/0.1C 속도특성은 90%임을 보였다.
본 연구에서는 PFO (pyrolyzed fuel oil)를 이용해 탄소 전구체(피치)를 얻은 후 KOH와 $K_2CO_3$를 이용한 화학적 활성화를 통해 표면 개질한 카본의 전기화학적 특성을 분석하였다. 탄소 전구체는 3903, 4001, 4002의 세 종류를 사용하였으며, 각 각 PFO를 $390^{\circ}C$ 3 시간, $400^{\circ}C$ 1시간, $400^{\circ}C$ 2 시간 열처리 하여 제조하였다. 또한 화학적 활성화 실험은 활성 촉매의 종류, 교반시간 등을 변화시키면서 비표면적 및 기공크기 등의 물성이 전기화학적 특성에 미치는 효과를 조사 하였다. 제조된 표면개질 PFO 피치의 물리적 특성은 BET, FE-SEM 등을 통해 분석되었으며, 음극 소재로서의 전기 화학적 성능은 충 방전, 순환전압전류, 임피던스, 속도 테스트를 통해 조사되었다. 화학적 활성화법을 이용해 제조한 카본의 평균 기공크기는 22 nm, 비표면적은 $3.12m^2/g$의 결과를 얻었다. 세 가지 개질된 석유계 피치를 음극소재로 사용하여 조사된 전기화학적 특성은 4001 피치가 가장 우수한 것으로 나타났으며, 이 때 표면개질 조건은 KOH를 사용하여 2시간 교반 후 화학적 활성화법에 의하여 열처리 하였다. KOH를 이용한 표면개질 PFO 피치를 사용해 제조한 전지의 초기 용량은 318 mAh/g, 초기효율은 80%로 우수한 결과를 보였으며, 2C/0.1C 속도 테스트 특성은 92%로 높은 특성을 보였다.
본 논문에서는 불필요한 용액의 발생이 없이 전해 반응계로 주입되는 용액을 오직 pH 만을 조절시켜 배출시키기 위한 연속식 이온 교환막 전해 시스템을 개발하였다. 여기서는 전해 반응기 앞에 한 pH-조정조를 두고 대상 용액을 pH-조정조로 주입하면서 pH-조정조의 용액의 일부를 이온 교환막에 따라 음극방 또는 양극방으로 거처 다시 pH-조정조로 순환하게 하고. 또한 pH-조정조의 용액의 일부는 상대극방을 통과시킴으로써 pH가 산성 또는 알카리로 조절되어 배출되게 하였다. 이러한 전해반응기에서 pH 조절 과정은 음극과 양극 사이에 전압 차가 형성될 시, 이온 교환막을 통한 용액에 존재하는 이온의 전기이동 현상에 의해 유발되는 음극방과 양극방에서 용액의 전하 비 평형 현상과 이에 따른 물의 전해 분해 과정에 의해 설명되었다.
본 논문에서는 암모니아의 전해 분해를 위한 분리막 반응기의 음극방 및 양극방에서 물의 전해에 따른 암모니아 용액의 pH 변화가 고찰되었으며, 단위 전해 셀이 적층된 다단 전해 반응기에서의 암모니아의 연속식 분해 특성이 평가되었다. 분리막을 가지는 반응기에서 암모니아 용액의 전해 반응 시, 양극에서는 pH가 8 이하에서부터 수소 이온이 생성되는 물 분해 반응이 일어나며, 음극에서는 pH가 11 이상에서부터 수산기 이온이 생성되는 물 분해 반응이 일어나 암모니아 용액의 pH를 변화시켜 암모니아 전해 분해에 영향을 크게 미쳤으며, 음이온 교환막을 사용하는 경우가 양이온 교환막을 사용하는 경우보다 양극방에서 암모니아 분해에 유리한 알카리 분위기를 보다 효과적으로 유지할 수 있었다. 분리막 전해 반응기의 특성을 이용하여 자체 pH 조정 기능을 가지는 연속식 암모니아 전해 반응기가 새롭게 고안하였고, 여기서는 pH-조정조 탱크 용액을 두고 이의 용액 일부를 음극방으로 순환시킴으로써, 양극방으로 주입되는 pH-조정조의 용액의 pH를 높여 암모니아 분해율을 높일 수 있었다. 또한, 그러한 반응기를 이용한 salt-free 연속식 암모니아 전해 분해 공정이 제시되었으며, 이러한 공정에서는 염소 이온을 가지는 암모니아 용액의 80%까지 연속적으로 암모니아를 환경에 무해한 질소로 분해 시킬 수 있었다.
순환전압전류 및 교류임피던스 기법을 이용하여 다결정 Pt/0.5M $H_2SO_4$ 및 0.5M LiOH수용액 계면에서 저전위 수소흡착(UPD H) 과 전위 수소흡착(OPD H)에 관한 Langmuir 흡착등온식 $({\theta}\;vs.\;E)$ 을 연구조사 하였다. 계면에서 치적중간주파수일 때 위상이동$(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ 거동은 표면피복율$(1{\geq}{\theta}{\geq}0)$ 거동에 정확하게 상응한다. 위상이 동 방법 즉 최적중간주파수일 때 위상이동 변화$({-\phi}\;vs.\;E)$는 계면에서 음극 $H_2$ 발생 반응에 관한 UPD H와 OPDH의 Langmuir흡착등온식을 결정할 수 있는 새로운 전기화학적 방법으로 사용할 수 있다 다결정 Pt/0.5M $H_2SO_4$ 수용액 계면에서 OPD H의 흡착평형상수(K)와 표준자유에너지$({\Delta}G_{ads})$는 각각 $2.1\times10^{-4}$와 21.0kJ/mol 이다. 다결정 Pt/0.5M LiOH 수용액 계면에서 K는 음전위(E)에 따라 2.7 (UPD H)에서 $6.2\times10^{-6}$ (OPD H) 또는 $6.2\times10^{-6}$(OPD H)에서 2.7 (UPD H)로 전이한다. 유사하게 ${\Delta}G_{ads}$는 E에 따라 -2.5kJ/mol (UPD H)에서 29.7kJ/mol (OPD H)또는 29.7kJ/mol (OPD H)에서 -2.5kJ/mol (UPD H)로 전이한다. K와 ${\Delta}G_{ads}$의 전이는 다결정 Pt전극 표면의 상이한 UPD H와 OPD H의 흡착부위에 기인한다. 다결정 Pt전극 계면에서 UPD H와 OPD H는 음극 $H_2$ 발생 반응에 따른 순차적 과정이 아니라, 수소 흡착부위 자체에 따른 독립적 과정이다. UPD H와 OPD H의 기준은 음극 $H_2$발생 반응과 전위가 아니라, 수소 흡착부위와 과정이다. 수용액에서 음극 $H_2$발생 반응에는 다결정 Pt선 전극이 단결정 Pt(100)원반 전극보다 더 효율적이고 유용하다 위상이동 방법은 열역학적 방법과 상충적이 아니라, 보완적이다.
고분자전해질형 연료전지의 구조 및 구성품의 물성에 따른 성능 및 물이동 현상에 관해서 많은 연구가 진행되고 있다. 이들 연구는 대체적으로 연료 전지의 BOP(Balance of plant)를 포함하는 연료전지 시스템에 관한 연구 보다는 단위 전지 및 스택에 관한 연구에 국한되어 왔다. 연료전지의 시스템에 관한 연구들 또한 세부적인 연료전지 내부의 거동에 대해서는 고려하지 않고 있었다. 이는 연료전지의 상세 모델을 이용해 연료전지 시스템에 대해 접근하기 보다는 시스템의 성능 및 동특성에 대한 연구가 주를 이루었기 때문으로 생각된다. 본 연구에서는 연료전지 음극의 수소 배출가스를 재순환할 경우 연료전지 내부에서의 거동에 미치는 영향에 대해 2차원 정상상태 모델을 이용하여 분석해 보았다. 이를 위해 2차원 정상상태 모델을 개발하였고 이를 실험을 통해 검증하는 작업을 수행하였다. 시뮬레이션은 모델식의 수정이 자유롭도록 상용패키지를 사용하지 않고 직접 구성한 알고리즘을 통해 수행되었다. 이는 여러 하이브리드 자동차용 연료전지 시스템이 연료전지 배출가스의 재순환을 고려하고 있는 상황에서 연료전지 작동 조건에 관련된 정보를 제공할 수 있다는 의의를 가진다.
염화물욕 아연도금에서 순환셀 도금장치에 3전극계를 부착하여 첨가제 효과를 조사하였다. 도금액에 폴리에틸렌글리콜(이하 PEG)의 첨가는 도금 과전압을 증가시키고 수소발생을 억제하는데 이것은 첨가제에 의하여 아연 이온의 이동을 억제하거나 음극에 첨가제 흡착에 의한 것으로 생각된다. 그러나 PEG는 사용되는 도금액의 물성(전도도, 점도, 비중)에는 영향을 미치지 않는 것으로 나타났다. 도금층에 미치는 영향은 표면 조도가 개선되고, 광택도가 감소된다. 이러한 영향은 PEG 분자수가 클수록 증가되나 분자수가 다른 PEG의 혼합첨가제에서는 광택도 감소가 줄어든다. 이러한 것은 도금층 결정면의 방향성, 입자의 크기 및 형태가 PEG 분자 수에 따라 다르게 나타나는 것에 기인하는 것으로 판단된다.
순환 전압-전류 그림에서 루비안산의 전기화학적 행동을 조사해 보면, 루비안산은 두 개의 환원 봉우리가 나타나는데, 첫번째 봉우리는 $S^{2-}$ 봉우리와 일치하므로 HgS 생성에 의한 환원 봉우리이며, 두번째 봉우리는 매우 약하며 확인되지 않았다. 시차 펄스 음극 벗김 전압-전류법으로 미량의 루비안산을 정량하는 방법을 고찰하였다. 루비안산의 정량을 위하여 pH 10.0, 붕산염 완충용액을 사용하였고, 최적 조건은 붕산염 완충용액의 농도 0.05M, 축적전위 -0.30V, 축적시간 120초, 그리고 주사속도 10mV/sec이다. 이 때 루비안산의 검출 한계는 $2.7{\times}10^{-8}M$이다.
본 연구에서는 1M $LiClO_4/PC$ 유기 용액 중에 존재하는 리튬 이온의 층간 반응에 의하여 전기 발색 현상을 나타내는 전자-선 증발법으로 제조된 비정질의 텅스텐 산화물 박막과 전해질 계면에서의 전기화학적 특성들을 연구하기 위하여 음극 Tafel 분극법, 순환 전류-전위법 및 전기량 적정법 등의 전기화학 측정법과 X선 회절 분석법을 이용한 박막의 결정 상태 조사 등이 수행되었다. 특히 다중 순환 전류-전위 곡선으로부터 리튬 이온의 층간 반응은 발색 반응에 대한 인가 과전압이 약 1.0V 이내에서는 안정된 소 발색의 가역적 현상을 나타내었으나, 발색 반응에 대한 인가 과전압이 1.5V일 때는 발색 시 삽입된 박막 내부의 리튬이 소색 시 완전히 빠져 나오지 못하여, 박막 내부에 리튬이 축적되는 현상을 나타내었으며, 적은 순환 횟수임에도 불구하고 소 발색의 전류 밀도가 감소되는 것이 조사되어 발색에 필요한 인가 과전압의 한계가 존재함을 알 수 있었다.
박막 리튬이차전지의 고용량 음극을 개발하기 위하여, Sn(II) 아세테이트를 포함한 유기전해조 도금법을 이용하여 Sn 박막전극을 제조하였다. $Li^+$와 $Sn^{2+}$를 포함한 전해조에 대한 순환전위전류시험 결과 3종류의 환원 반응이 나타났으며, $2.0{\sim}2.5\;V$ 영역이 Ni 집전체 표면에 대한 Sn의 석출 반응에 해당한다. 수계전해액에 대한 $Sn^{2+}$의 표준환원전위는 2.91 V vs. $Li^+/Li^{\circ}$ 인데 반해 유기전해조에서는 보다 낮은 전위에서 환원반응이 일어났다. 이는 유기전해질의 고저항과 $Sn^{2+}$의 낮은 농도에 기인한 과전위의 결과로 생각된다. 제조한 전극의 물리적 특성 및 전기화학적 특성을 연구하였다. 석출한 Sn 전극을 $150^{\circ}C$로 열처리하여 보다 높은 결정성을 얻을 수 있었고, 이를 Sn/Li 전지로 구성하여 전기화학적 실험을 한 결과 0.25 V와 0.75 V에서 각각 합금화-탈합금화 과정을 확인 할 수 있었다. 제조한 전극의 두께를 전기량을 통하여 계산한 바 $7.35{\mu}m$였으며, 가역용량은 $400{\mu}Ah/cm^2$을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.