DOI QR코드

DOI QR Code

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries

유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조

  • 김동훈 (한국전기연구원 전지연구그룹) ;
  • 도칠훈 (한국전기연구원 전지연구그룹) ;
  • 이정훈 (한국전기연구원 전지연구그룹) ;
  • 이덕준 (한국전기연구원 전지연구그룹) ;
  • 하경화 (한국전기연구원 전지연구그룹) ;
  • 진봉수 (한국전기연구원 전지연구그룹) ;
  • 김현수 (한국전기연구원 전지연구그룹) ;
  • 문성인 (한국전기연구원 전지연구그룹) ;
  • 황영기 (경남대학교 화학공학과)
  • Published : 2008.11.30

Abstract

Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

박막 리튬이차전지의 고용량 음극을 개발하기 위하여, Sn(II) 아세테이트를 포함한 유기전해조 도금법을 이용하여 Sn 박막전극을 제조하였다. $Li^+$$Sn^{2+}$를 포함한 전해조에 대한 순환전위전류시험 결과 3종류의 환원 반응이 나타났으며, $2.0{\sim}2.5\;V$ 영역이 Ni 집전체 표면에 대한 Sn의 석출 반응에 해당한다. 수계전해액에 대한 $Sn^{2+}$의 표준환원전위는 2.91 V vs. $Li^+/Li^{\circ}$ 인데 반해 유기전해조에서는 보다 낮은 전위에서 환원반응이 일어났다. 이는 유기전해질의 고저항과 $Sn^{2+}$의 낮은 농도에 기인한 과전위의 결과로 생각된다. 제조한 전극의 물리적 특성 및 전기화학적 특성을 연구하였다. 석출한 Sn 전극을 $150^{\circ}C$로 열처리하여 보다 높은 결정성을 얻을 수 있었고, 이를 Sn/Li 전지로 구성하여 전기화학적 실험을 한 결과 0.25 V와 0.75 V에서 각각 합금화-탈합금화 과정을 확인 할 수 있었다. 제조한 전극의 두께를 전기량을 통하여 계산한 바 $7.35{\mu}m$였으며, 가역용량은 $400{\mu}Ah/cm^2$을 얻었다.

Keywords

References

  1. K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, 'Thin Film Solid Electrolyte and its Application to Secondary Lithium Cell', Solid State Ionics, 9-10, 1445 (1983) https://doi.org/10.1016/0167-2738(83)90192-3
  2. 문희수, 성상현, 김영일, 박종완, '산소량에 따른 SnOx 박막의 음극 특성', J. Korean Electrochem. Soc., 3, 178 (2000)
  3. R. Z. Hu, Y. Zhang, and M. Zhu, 'Microstructure and Electrochemical Properties of Electron-beam Deposited Sn-Cu tHin Film Anodes for Thin Film Lithium-ion Batteries.', Electrochemica Acta, 53(8), 3377 (2008) https://doi.org/10.1016/j.electacta.2007.11.064
  4. N. J. Dudney 'Solid-state Thin-film Rechargeable Batteries.', Materials Science and Engineering B, 116, 245 (2005) https://doi.org/10.1016/j.mseb.2004.05.045
  5. J. P. Maranchi, A. F. Hepp, and P. N. Kumta, '$LiCoO_{2}$ and $SnO_{2}$ Thin Film Electrode for Lithium-ion Battery Applications', Materials Science and Engineering B, 116, 327 (2005) https://doi.org/10.1016/j.mseb.2004.05.041
  6. Hui Xia, Songbai Tang, and Li Lu, 'Properties of Amorphous Si Thin Film Anodes Prepared by Pulsed Laser Deposition.', Materials Research Bulletin, 42 1301 (2007) https://doi.org/10.1016/j.materresbull.2006.10.007
  7. J. W. Park, S. Rajendran, and H. S. Kwon, 'Effect of Substrate Morphology and Ageing on Cycle Performance of a Sn-anode Fabricated by Electroplating', J. Power Sources, 159, 1409 (2006) https://doi.org/10.1016/j.jpowsour.2005.11.064
  8. L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard, and J. R. Dahn, 'The Electrochemical Reaction of Lithium with tin Studied by in Situ AFM', J. Electrochem. Soc., 150, A419 (2003) https://doi.org/10.1149/1.1556595
  9. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn, 'Reaction of Li With Alloy Thin Films Studied by in Situ AFM', J. Electrochem. Soc., 150, A1457(2003) https://doi.org/10.1149/1.1613668
  10. M. Inaba, T. Uno, and A. Tasaka, 'Irreversible Capacity of Electrodeposited Sn Thin Film Anode', J. Power Sources, 146, 473 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.052
  11. M. Winter and J. O. Besenhard, "Electrochemical Lithiation of tin and Tin-based Intermetallics and Composites', Electrochim. Acta, 45, 31 (1999) https://doi.org/10.1016/S0013-4686(99)00191-7
  12. N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, and I. Yonezu, 'Study on the Anode Behavior of Sn and Sn-Cu Alloy Thin-film Electrodes', J. Power Sources,107, 48 (2002) https://doi.org/10.1016/S0378-7753(01)00979-X
  13. S. J. Lee, H. Y. Lee, S. H. Jeong, H. K. Baik, and S. M. Lee, 'Performance of Tin-containing Thin-film Anodes for Rechargeable Thin-film Batter', J. Power Sources,111, 345 (2002) https://doi.org/10.1016/S0378-7753(02)00344-0
  14. T. Takamura, K. Sumiya, J. Suzuki, C. Yamada, and K. Sekine, 'Enhancement of Li dOping/undoping Reaction Rate of Carbonaceous Materials by Coating with an Evaporated Metal Film', J. Power Sources, 81-82, 368 (1999) https://doi.org/10.1016/S0378-7753(98)00220-1
  15. N. Kuwata, R Kumar, K. Toribami, T. Suzuki, T. Hattori, and J. Kawamura, 'Thin Film Lithium Ion Batteries Prepared Only by Pulsed Laser Deposition', Solid State Ionics, 177, 2827 (2006) https://doi.org/10.1016/j.ssi.2006.07.023