• Title/Summary/Keyword: 유리화기술

Search Result 381, Processing Time 0.026 seconds

Helium dielectric barrier discharge-cold plasma treatment for microbiological safety and preservation of onion powder (유전체 방벽 방전 콜드 플라즈마 기술을 이용한 양파 분말 미생물 안전성 향상 및 품질 보존)

  • Won, Mee Yeon;Choi, Ha Young;Lee, Kwang Sik;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.486-491
    • /
    • 2016
  • Efficacy of dielectric barrier discharge-cold plasma treatment (DBD-CPT) for microbial decontamination of onion powder was evaluated. Onion powder, inoculated with Escherichia coli O157:H7, Salmonella Enteritidis, or Listeria monocytogenes, was treated with helium DBD-CPT. DBD-CPT (9 kV, 20 min) inhibited E. coli O157:H7, S. Enteritidis, and L. monocytogenes by $1.4{\pm}0.5$, $2.3{\pm}0.3$, and $1.2{\pm}0.0log\;CFU/cm^2$, respectively. The inactivation levels of E. coli O157:H7, S. Enteritidis and L. monocytogenes increased by $2.2{\pm}0.1$, $2.5{\pm}0.1$ and $1.9{\pm}0.3log\;CFU/cm^2$, respectively, as water activity increased from 0.4 to 0.8, and increased by $2.3{\pm}0.4$, $2.1{\pm}0.1$ and $1.6{\pm}0.1log\;CFU/cm^2$, respectively, as the particle size increased from 0.3 to $1.0cm^2$. Neither the ascorbic acid and quercetin concentrations nor the color of onion powder was changed by DBD-CPT (p>0.05). These results demonstrate the potential for application of DBD-CPT in improving microbiological safety of onion powder while preserving the physicochemical properties.

A Study on 3.0m Low-Altitude Long-Endurance Solar Powered UAV System (3.0m급 저고도 장기체공 태양광 무인기 시스템 연구)

  • Jaebaek Jeong;Taerim Kim;Doyoung Kim;Seokmin Moon;Jae-Sung Bae;Sanghyuk Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.10-17
    • /
    • 2023
  • This paper describes the research and development of a 3.0 m Solar-Powered UAV system for mission flight that is based on the 4.2 m Solar-powered UAV. Both the Solar-Powered UAVs were lightened in weight by applying a composite fuselage and solar charging system. Also, a deep stall landing application and airbag module were installed for usability in mission performance. The flight performance of the Solar-Powered UAV system was verified through flight test. In particular, the 3.0 m Solar-Powered UAV performed continuous flight along the coastline of Jeju Island for 147 km in 3 hours and 50 minutes, and its performance as a mission flight was also confirmed.

Female Vaginitis Active Ingredients of 16 Kinds Natural Herbal Medicine Extracts and Dyeing Effect on Cotton Fabric (16종 천연물 추출물의 여성질염 활성성분 및 면포 염착 효과)

  • Hyun Kyoung Kim;Yungi Lee;Subin Choi;DO Wan Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.725-733
    • /
    • 2023
  • The evaluation of functional active ingredients and dyeing effect on cotton fabric using 16 types of natural products water extracts and 50% ethanol extracts, there were differences in color intensity, but 6 types of red, 5 types of yellow, 2 types of orange, and 3 types of green were observed. In general, the color of the 50% ethanol extract was high and clear. As a result of dyeing by immersing cotton gauze in water extracts and 50% ethanol extracts of these natural products for 2 days, the dyeing effect was generally good, and it was observed that there was little fading decrease in color even after drying at room temperature and opening and storing. The pH of the water extracts of 16 natural products ranged from neutral to slightly acidic, with no side effects on the skin. For DPPH free radical inhibition antioxidant effect, the effect of 50% ethanol extract for each sample was better than that of water extract. As for the polyphenol content, the content of the 50% ethanol extract tended to be higher than that of the water extract. Therefore, the purpose of this study was to investigate the correlation between the antioxidant activity of 16 natural extracts and the prevention of female vaginitis.

Effect of Cryopreservation Day on Pregnancy Outcomes in Frozen-thawed Blastocyst Transfer (동결 해동한 포배 이식에 있어서 동결시기가 임신결과에 미치는 영향)

  • Kim, Hyun-Jung;Kim, Chung-Hyon;Lee, Joong-Yeup;Kwon, Jae-Hee;Hwang, Do-Yeong;Kim, Ki-Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Objectives: Likewise fresh cycle, it is also important to select right blastocysts for transfer in purpose of improving the pregnancy and implantation rates in frozen-thawed embryo transfer (ET) cycles. To investigate the relationship between the developmental velocity at the time of cryopreservation and pregnancy rates, we compared pregnancy rates between the day 5 cryopreservation group and the day 6 cryopreservation group. Methods: Transfers of frozen-thawed blastocysts which had been cryopreserved by vitrification on day 5 or day 6 were performed between January 2006 and June 2007. Ethylene glycol, DMSO, and pull and cut straws were used for vitrification and artificial shrinkage was done in expanded blastocysts. Thawing was performed on the day before transfer and thawed blastocysts were cultured in for 15~18 hrs in Quinn's blastocyct media. Blastocyst survival was assessed before transfer and post-thaw survival was defined as >50% of cells remaining intact and blastocoele re-expansion by the time of transfer. Results: Transfers of thawed blastocyst had been cryopreserved on day 5 were 52 cycles and 41 transfer cycles were cryopreserved on day 6. Patient characteristics, the number of transferred embryos and the survival rate of thawed blastocysts were not different in each cryopreservation day. But the biochemical pregnancy, clinical pregnancy, ongoing pregnancy, and implantation rate were significantly high in transfer of frozen-thawed blastocyst which were cryopreserved on day 5. Conclusions: The clinical pregnancy and implantation rate of day-5 blastocyst showed significantly higher than those of day-6 blastocyst in frozen-ET cycles. This result indicated that developmental rate of blastocyst at cryopreservation time in frozen-thawed cycle is discriminative marker of pregnancy outcome as like in fresh cycle.

ATM Cell Encipherment Method using Rijndael Algorithm in Physical Layer (Rijndael 알고리즘을 이용한 물리 계층 ATM 셀 보안 기법)

  • Im Sung-Yeal;Chung Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.83-94
    • /
    • 2006
  • This paper describes ATM cell encipherment method using Rijndael Algorithm adopted as an AES(Advanced Encryption Standard) by NIST in 2001. ISO 9160 describes the requirement of physical layer data processing in encryption/decryption. For the description of ATM cell encipherment method, we implemented ATM data encipherment equipment which satisfies the requirements of ISO 9160, and verified the encipherment/decipherment processing at ATM STM-1 rate(155.52Mbps). The DES algorithm can process data in the block size of 64 bits and its key length is 64 bits, but the Rijndael algorithm can process data in the block size of 128 bits and the key length of 128, 192, or 256 bits selectively. So it is more flexible in high bit rate data processing and stronger in encription strength than DES. For tile real time encryption of high bit rate data stream. Rijndael algorithm was implemented in FPGA in this experiment. The boundary of serial UNI cell was detected by the CRC method, and in the case of user data cell the payload of 48 octets (384 bits) is converted in parallel and transferred to 3 Rijndael encipherment module in the block size of 128 bits individually. After completion of encryption, the header stored in buffer is attached to the enciphered payload and retransmitted in the format of cell. At the receiving end, the boundary of ceil is detected by the CRC method and the payload type is decided. n the payload type is the user data cell, the payload of the cell is transferred to the 3-Rijndael decryption module in the block sire of 128 bits for decryption of data. And in the case of maintenance cell, the payload is extracted without decryption processing.

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Study on Basic Requirements of Geoscientific Area for the Deep Geological Repository of Spent Nuclear Fuel in Korea (사용후핵연료 심지층처분장부지 지질환경 기본요건 검토)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Park, Ju-Wan;Park, Jin-Baek;Song, Jong-Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2012
  • This paper gives some basic requirements and preferences of various geological environmental conditions for the final deep geological repository of spent nuclear fuel (SNF). This study also indicates how the requirements and preferences are to be considered prior to the selection of sites for a site investigation as well as the final disposal in Korea. The results of the study are based on the knowledge and experience from the IAEA and NEA/OECD as well as the advanced countries in SNF disposal project. This study discusses and suggests preliminary guideline of the disposal requirements including geological, mechanical, thermal, hydrogeological, chemical and transport properties of host rock with long term geological stabilities which influence the functions of a multi-barrier disposal system. To apply and determine whether requirements and preferences for a given parameter are satisfied at different stages during a site selection and suitability assessment of a final disposal site, the quantitative criteria in each area should be formulated with credibility through relevant research and development efforts for the deep geological environment during the site screening and selection processes as well as specific studies such as productions of safety cases and validation studies using a generic underground research laboratory (URL) in Korea.

Operating Optimization and Economic Evaluation of Multicomponent Gas Separation Process using Pressure Swing Adsorption and Membrane Process (압력 순환 흡착과 막 분리공정을 이용한 다성분 기체의 분리공정 조업 최적화 및 경제성 평가)

  • Kim, Hansol;Lee, Jaewook;Lee, Soobin;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • At present, carbon dioxide ($CO_2$) emission, which causes global warming, is a major issue all over the world. To reduce $CO_2$ emission directly, commercial deployment of $CO_2$ separation processes has been attempted in industrial plants, such as power plant, oil refinery and steelmaking plant. Besides, several studies have been done on indirect reduction of $CO_2$ emission from recycle of reducing gas (carbon monoxide or hydrogen containing gas) in the plants. Unlike many competing gas separation technologies, pressure swing adsorption (PSA) and membrane filtration are commercially used together or individually to separate a single component from the gas mixture. However, there are few studies on operation of sequential separation process of multi-component gas which has more than two target gas products. In this paper, process simulation model is first developed for two available configurations: $CO_2$ PSA-CO PSA-$H_2$ PSA and $CO_2$ PSA-CO PSA-$H_2$ membrane. Operation optimization and economic evaluation of the processes are also performed. As a result, feed gas contains about 14% of $H_2$ should be used as fuel than separating $H_2$, and $CO_2$ separation should be separated earlier than CO separation when feed gas contains about 30% of $CO_2$ and CO. The simulation results can help us to find an optimal process configuration and operation condition for separation of multicomponent gas with $CO_2$, CO, $H_2$ and other gases.

Chitosan Derivatives for Target of Specific Tissue in the Body (생체 내 특정 조직의 표적을 위한 키토산 유도체)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.593-602
    • /
    • 2010
  • Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.