• Title/Summary/Keyword: 유가금속회수

Search Result 125, Processing Time 0.039 seconds

Technical Trends in the Patents and Papers for the Recycling of Organic Residues from Waste Printed Circuit Boards (특허(特許)와 논문(論文)으로 본 폐(廢)PCB 유기계(有機界) 잔유물(殘留物) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Dai-Soo;Shin, Sera;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • Electronic products such as appliances, computers, and cellular phones have printed circuit boards (PCBs) in common and the PCBs in the waste electronic products contain valuable metals and organic resins. In Korea, recovery and recycling of the organic resins as well as the valuable metallics from the wastes are required indeed as the most of resources are being imported from abroad. In this article, the patents and papers for the recycling of organic residues from the waste PCBs were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1979 to 2012 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper. It is showed sluggish relatively activity of published papers and patent applications for polymer manufacturing technology in local and abroad.

A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery (폐리튬이차전지 스크랩 재활용을 통한 양극활물질 전구체 합성 연구)

  • Kim, BoRam;Kim, Dae-Weon;Kim, Tae-heon;Lee, Jae-Won;Jung, Hang-chul;Han, Deokhyun;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2022
  • A metal salt solution was prepared from valuable metals (Ni, Co, Mn) recovered from a scrap of waste lithium secondary batteries, and an NCM811 precursor was synthesized from the solution. The effect on precursor formation according to reaction time was confirmed by SEM, PSA, and ICP analysis. Based on the analysis results, the electrochemical properties of the synthesized NCM811 precursor and the commercial NCM811 precursor were investigated. The Galvano charge-discharge cycle, rate performance, and Cycle performance were compared, and as a result, there was no significant difference from commercial precursors.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Biological Leaching of Cu, Al, Zn, Ni, Co, Sn and Pb from Waste Electronic Scrap using Thiobacillus Ferrooxidans (廢電子스크랩에서 Thiobacillus ferrooxidans를 이용한 Cu, Al, Zn, Ni, Co, Sn 및 Pb의 浸出)

  • Ahn, Jae-Woo;Kim, Myeong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin;Ahn, Jong-Gwan
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • In order to recover valuable metals from the waste electronic scrap, bioleaching of Cu, Zn, Al, Co, Ni, Sn and Pb was carried out using Thiobacillus ferrooxidans as a leaching microorganism in a shaking flask. In a preliminary study, to obtain the data on the leaching of Cu, Zn, Al, Co and Ni, the metal leaching was accomplished using metal powers instead of electronic scrap. The leaching percentaga of Cu, Zn, Co, Al and Ni powers was reduced with the increase of metal power concentration in solution. Below the metal concentration of 0.5 g/L, more than 85% of Cu, Co and Zn powers was leached out. At the electronic scrap concentration of 100 g/L, Thiobacillus ferrooxidans were able to leach more than 90% of the available Cu and Co while Al, Zn and Ni were able to leach less than 40%. Pb and Sn were not detected in the leachate. Pb was precipitated as PbSO$_4$, whereas Sn precipitated probably as SnO.

Study on Recovery of Precious Metal (Ag, Au) from Anode Slime Produced by Electro-refining Process of Anode Copper (양극동의 전해정련시 발생된 양극슬라임으로부터 귀금속(Ag, Au) 회수에 대한 연구)

  • Kim, Young-Am;Park, Bo-Gun;Park, Jae-Hun;Hwang, Su-Hyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.23-29
    • /
    • 2018
  • Recently rapid economic growth and technological development have led to an increase in the generation of waste electrical and electronic equipment (WEEE). As the amount of electric and electronic waste generated increases, the importance of processing waste printed circuit boards (PCB) is also increasing. Various studies have been conducted to recycle various valuable metals contained in a waste PCB in an environmentally friendly and economical manner. To get anode slime containing Ag and Au, Anode copper prepared from PCB scraps was used by means of electro-refining. Ag and Au recovery was conducted by leaching, direct reduction, and ion exchange method. In the case of silver, the anode slime was leached at 3 M $HNO_3$, 100 g/L, $70^{\circ}C$, and Ag was recovered by precipitation, alkali dissolution, and reduction method. In the case of gold, the nitrate leaching residues of the anode slime was leached at 25% aqua regia, 200 g/L, $70^{\circ}C$, and Au was recovered by pH adjustment, ion exchange resin adsorption, desorption and reduction method. The purity of the obtained Au and Ag were confirmed to be 99.99%.

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method (저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수)

  • Dae-Weon Kim;Hee-Seon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

Recycling Industry of Urban Mines by Applying Non-Ferrous Metallurgical Processes in Japan (비철제련(非鐵製鍊) 프로세스를 이용한 일본(日本)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.12-27
    • /
    • 2011
  • DOWA group has been working on metal recycling applying the smelting and refining process of KOSAKA Smelter. DOWA has developed it's metal recycling technologies through the treatment of black ore(complex sulfide ores) that contain many kinds of non-ferrous metals. In addition to these special technologies, DOWA has strengthened its hydrometallurgical process of precious metals and ability to deal with low-grade materials such as used electrical appliances or vehicles. On the other hand, JX Nippon Mining & Metals Corporation(JX-NMMC) carries out its metal recycling and industrial waste treatment businesses employing advanced separation, extraction and refining technologies developed through its extensive experience in the smelting of non-ferrous metals. JX-NMMC collects approximately 100,000t/y of copper and precious metal scraps from waste sources such as electronic parts, mobile phones, catalytic converters, print circuit boards and gold plated parts. These items are recycled through the smelting and refining operations of Saganoseki smelter and Hitachi Metal-recycling complex(HMC). In this like, metal recycling industries combined with environmental business service in Japan have been developed through excellent technologies for mineral processing and non-ferrous smelting. Also, both group, Dowa and JX-NMMC, were contributed to establish Japan's recycling-oriented society as the typical leading company of non-ferrous smelting. Now. it is an important issue to set up the collection system for e-waste.

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process (폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구)

  • Chae, Byungman;Lee, Seokhwan;Kim, Deuk-Hyeon;Seo, Eun-Ju;Kim, Hyunil;Lee, Seunghwan;Lee, Sangwoo
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.116-121
    • /
    • 2020
  • In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.