DOI QR코드

DOI QR Code

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials

폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법

  • Ku, Heesuk (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Jung, Yeojin (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Kang, Ga-hee (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Kim, Songlee (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Kim, Sookyung (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Yang, Donghyo (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Rhee, Kangin (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Sohn, Jeongsoo (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Kwon, Kyungjung (Department of Energy & Mineral Resources Engineering, Sejong University)
  • 구희숙 (세종대학교 에너지자원공학과) ;
  • 정여진 (세종대학교 에너지자원공학과) ;
  • 강가희 (세종대학교 에너지자원공학과) ;
  • 김송이 (세종대학교 에너지자원공학과) ;
  • 김수경 (한국지질자원연구원) ;
  • 양동효 (한국지질자원연구원) ;
  • 이강인 (한국지질자원연구원) ;
  • 손정수 (한국지질자원연구원) ;
  • 권경중 (세종대학교 에너지자원공학과)
  • Received : 2015.03.23
  • Accepted : 2015.05.22
  • Published : 2015.06.30

Abstract

Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

전기자동차의 수요가 증가함에 따라 리튬이온전지의 생산량도 증가하여 효율적인 전지 재활용 기술이 요구된다. 폐리튬이온전지를 재활용하는 방법에는 크게 건식제련과 습식제련에 기반한 방법으로 나눌 수 있다. 본 연구에서는 하이브리드 자동차에 사용된 폐리튬이온전지의 양극활물질을 습식제련에 기반한 암모니아침출법을 이용하여 활물질 내의 유용금속인 Ni, Mn, Co의 침출거동을 조사하였다. 물리적으로 처리된 활물질의 입자크기는 -65 mesh이며, 주된 원소는 14.0 wt% Ni, 13.0 wt% Mn, 5.7 wt% Co이다. 암모니아, 환원제 (아황산암모늄), pH 완충제 (탄산암모늄 혹은 황산암모늄)의 존재하에 각 금속의 침출거동을 확인하고, 또한 침출시간과 온도에 따른 침출률의 영향도 조사하였다. 환원제의 존재는 Ni과 Co의 침출률 향상을 위해 필수적이다. 암모니아침출법은 산침출법과 달리 Ni/Co와 Mn의 선택적인 침출이 가능하여 침출된 유용금속을 분리하는 단계를 줄일 수 있고, 산침출 후 수반되는 침전과정 시 필요로 하는 추가 염기성 시약의 사용을 줄일 수 있다.

Keywords

References

  1. Etachei, V. et al., 2011: Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, pp. 3243-3262. https://doi.org/10.1039/c1ee01598b
  2. Al Hossaini Shuva, M. and Kurny, A.S.W., 2011: Hydrometallurgical recovery of value metals from spent lithium ion batteries, Am. J. Mater. Eng. Technol., 1(1), pp. 8-12.
  3. Zhang, X. et al., 2013: An overview on the process and technologies for recycling cathodic active materials from spent lithium-ion batteries, J. Mater. Cycles. Waste. Manag., 15, pp. 420-430. https://doi.org/10.1007/s10163-013-0140-y
  4. Chagnes, A. and Pospiech, B., 2013: A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries, J. Chem. Technol. Biotechnol., 88, pp. 1191-1199. https://doi.org/10.1002/jctb.4053
  5. Zeng, X., Li, J. and Singh, N., 2014: Recycling of spent lithium-ion battery: a critical review, Crit. Rev. Environ. Sci. Technol., 44, pp. 1129-1165. https://doi.org/10.1080/10643389.2013.763578
  6. Lee, C.K. and Kim, T.H., 2000: Leaching of cathodic active materials from spent lithium ion battery, J. of Korean Inst. Of Resources Recycling, 9, pp. 37-43.
  7. Son, S.H. et al., 2014: Leaching of valuable metals from NCM cathode active materials in spent lithium-ion battery by malic acid, J. of Korean Inst. of Resources Recycling, 23, pp. 21-29.
  8. Shin, S.M. et al., 2005: Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, 79, pp. 172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  9. Ferreira, D.A. et al., 2009: Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, J. Power Sources, 187, pp. 238-246. https://doi.org/10.1016/j.jpowsour.2008.10.077
  10. Wang, R.C., Lin, Y.C. and Wu, S.H., 2009: A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries, Hydrometallurgy, 99, pp. 194-201. https://doi.org/10.1016/j.hydromet.2009.08.005
  11. Joulie, M., Laucourtnet, R. and Billy, E., 2014: Hydrometallurgical process for the recovery of high metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries, J. Power Sources, 247, pp. 551-555. https://doi.org/10.1016/j.jpowsour.2013.08.128
  12. Bhuntumkomol, K., Han, K.N. and Lawson, F., 1982: The leaching behavior of nickel oxides in acid and in Ammoniacal solutions, Hydrometallurgy, 8, pp. 147-160. https://doi.org/10.1016/0304-386X(82)90041-X
  13. Das, R.P. et al., 1986: Leaching of manganese nodules in ammoniacal medium using glucose as reductant, Hydrometallurgy, 16, pp. 335-344. https://doi.org/10.1016/0304-386X(86)90008-3
  14. Rokukawa, N., 1992: Extraction of nickel, cobalt and copper from ocean cobalt crusts with ammoniacal alkaline solution, Shigen-to-sozai, 108(3), pp. 187-191. https://doi.org/10.2473/shigentosozai.108.187
  15. Niinae, M. et al., 1996: Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammoniacal solutions using ammonium thiosulfate and ammonium sulfite as reducing agents, Hydrometallurgy, 40, pp. 111-121. https://doi.org/10.1016/0304-386X(94)00085-H
  16. Senanayake, G., 2010: Comparative leaching of spent zincmanganese- carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions, Hydrometallurgy, 105, pp. 36-41. https://doi.org/10.1016/j.hydromet.2010.07.004
  17. Yoo, K.K. and Kim, H.J., 2012: Development of Ammoniacal leaching processes; a review, J. of Korean Inst. of Resources Recycling, 21, pp. 3-17.
  18. Han, K.N., Hoover, M. and Fuerstenau, D.W., 1974: Ammonia-ammonium leaching of deep-sea manganese nodules, Int. J. Miner. Process., 1, pp. 215-230. https://doi.org/10.1016/0301-7516(74)90016-7
  19. Katsiapi, A. et al., 2010: Cobalt recovery from mixed Co- Mn hydroxide precipitates by ammonia-ammonium carbonate leaching, Miner. Eng., 23, pp. 643-651. https://doi.org/10.1016/j.mineng.2010.03.006
  20. Kumbasar, R.A. and Kasap, S., 2009: Selective separation of nickel from cobalt in ammoniacal solutions by emulsion type liquid membranes using 8-hydroxyquinoline (8-HQ) as mobile carrier, Hydrometallurgy, 95, pp. 121-126. https://doi.org/10.1016/j.hydromet.2008.05.002
  21. Vu, C., Han, K.N. and Lawson, F., 1980: Leaching behavior of cobaltous and cobalto-cobaltic oxides in ammonia and in acid solutions, Hydrometallurgy, 6, pp. 75-87. https://doi.org/10.1016/0304-386X(80)90009-2
  22. Bingol, D., Canbazoglu, M. and Aydogan, S., 2005: Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching, Hydrometallurgy, 76, pp. 55-62. https://doi.org/10.1016/j.hydromet.2004.09.006
  23. Miyake, M. and Maeda, M., 2006: Dissolution of nickel hydroxide in ammoniacal aqueous solutions, Metall. Mater. Trans. B, 37B, pp. 181-188.
  24. Shin, S.M. et al., 2008: Selective leaching of zinc from spent zinc-carbon battery with ammoniacal ammonium carbonate, Mater. Trans., 49(9), pp. 2124-2128. https://doi.org/10.2320/matertrans.MRA2008164
  25. Shin, S.M. et al., 2007: Comparison acid and alkaline leaching for recovery of valuable metals from spent zinccarbon battery, Geosyst. Eng., 10(2), pp. 21-26. https://doi.org/10.1080/12269328.2007.10541267

Cited by

  1. The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials vol.24, pp.6, 2015, https://doi.org/10.7844/kirr.2015.24.6.9
  2. Study on the Optimum Conditions for Synthesizing a Cathode Active Material Precursor in Li-Ion Batteries Using a Taylor Reactor vol.57, pp.6, 2015, https://doi.org/10.3365/kjmm.2019.57.6.360
  3. Recycle, Recover and Repurpose Strategy of Spent Li‐ion Batteries and Catalysts: Current Status and Future Opportunities vol.13, pp.12, 2015, https://doi.org/10.1002/cssc.201903213