DOI QR코드

DOI QR Code

A Study on the Carbon Composite Briquette Iron Manufacturing Using Fe-containing Process Wastes

함철부산물을 활용한 탄재 내장 단괴 제조에 관한 연구

  • Received : 2015.02.17
  • Accepted : 2015.04.15
  • Published : 2015.06.30

Abstract

Raw materials in steel industry decide on the productivity, quality and price competitiveness. Utilizing iron-containing by-products as raw materials for steel products can save the cost of cleaning up iron-containing by-products and solve environmental issues. Iron-containing by-products have a small particle size. If they are directly inserted in a steel making process, it cause a problem such as poor heat flow and scattering. To solve these problems and induce the additional reduction, study concern with iron ore-coal mixed briquette technique are conducted by many researchers. In this paper, method of making carbon composite briquette iron(CCBI) using iron-containing by-products was studied. The effect of composition of Fe-containing process wastes, reducing agent, flux and binder on formability of CCBI (carbon composite briquette iron) was measured.

철강 산업에서의 원재료는 생산성, 품질, 가격경쟁력에 결정적인 역할을 하고 있다. 철강제품의 원재료를 함철부산물로 활용한다면, 함철부산물을 처리하기 위한 비용 및 환경오염문제를 해결할 뿐만 아니라 가격경쟁력을 높일 수 있다. 함철부산물들은 대부분 작읍입도를 가지고 있어서, 제강공정 내에 직접 투입하게 되면 열 유동 및 원료 비산 등의 문제가 발생하게 된다. 이러한 문제점을 해결하고 추가적인 환원을 유도하기 위해 철원에 탄재를 혼합한 뒤 단괴를 성형하여 제강공정 내에 투입하는 방법이 연구되고 있다. 본 연구에서는 함철부산물에 탄재를 혼합하여 단괴를 성형하는 방법에 대해 연구하였다. 함철부산물, 탄재, 융제, 바인더에 따른 CCBI (carbon composite briquette iron)의 성형성 및 압축강도를 확인하였다.

Keywords

References

  1. Kim, Y. H., Yoo, J.M., Kim, D.S., Lim, J.H., and Yang S.H. 2013: A Study on the Recycling of Molten Ladle Slag Residue into LF Process, J. of Korean Inst. of Resources Recycling, 22(1), pp36-41 https://doi.org/10.7844/kirr.2013.22.1.36
  2. Choi Sang-Won, Kim V., Chang W.-S. and Kim E.-Y., 2007: The Present Situation of Production and Utilization of Steel Slag in Korea and Other Countries, KCI, 19(6), pp. 28-33.
  3. Wi, C.H., Kim, S.M., Yun, K.W., You, B.D., Kim, D.S. and Choi, H.J., 2007: Reduction Behavior of Carbon Composite EAF Dust and Scale Briquettes, Korean J. Met. Mater, 45(6), pp. 368-376.
  4. Cha, Y.J., Kim, T.H., You, B.D., Han, J.W., Choi, E.S. and Lee, D.W., 2001: A Study on the Reduction Behavior of Carbon-Iron oxide Pellet, Korean J. Met. Mater, 40(2), pp. 237-243.
  5. Sun K. and Lu W.K., 2008: Mathenatical Modeling of the Kinetics of Carbothermic Reduction of Iron Oxides in Ore-Coal Composite Pellets, Metall. Mater. Trans. B., 40B, pp. 91-103.
  6. Capes C.E. and Darcovich K., 2000: Kirk-Othmer Encyclopedia of Chemical Technology-Size enlargement, John Wiley & Sons Inc., U.S.A., pp. 77-105.
  7. Sah R. and Dutta S.K., 2010: Effects of Binder on the Properties of Iron Ore-Coal Composite Pellets, Mineral Processing and Extractive Metallurgy Review, 31, pp. 73-85. https://doi.org/10.1080/08827500903404732
  8. Patil J.B., Kakkar N.K., Srinivasan T.M., Dharanipalan S., Patel B.B. and Nayak N.M., 1980: Production of cold bonded pellets, Trans. of the Indian Institute of Metals, 33(5), pp. 382-390.
  9. Goberis S. and Antonovich V., 2004: Influence of sodium silicate amount on the setting time and EXO temperature of a complex binder consisting of high-aluminate cement, liquid glass and metallurgical slag, Cement and Concrete Research, 34, pp. 1939-1941. https://doi.org/10.1016/j.cemconres.2004.01.004
  10. Lee, D.J., Yoon, E.Y., Kim, H.N., Kang, H.S., Lee, E.S. and Kim, H.S., 2011: Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts, Korean Powder Metall. Inst., 18(5), pp. 406-410. https://doi.org/10.4150/KPMI.2011.18.5.406
  11. Charles Schacht, 2004: Refractories Handbook, Alumina-Silica Brick, CRC press, U.S.A., pp. 104.