• Title/Summary/Keyword: 위성영상(Satellite Image) analysis

Search Result 512, Processing Time 0.027 seconds

Overview of Current Applications of Satellite Images in Agricultural Sectors (농림업 분야의 위성영상 활용현황)

  • Kim, Hyeon-Cheol;Kim, Bum-Seung;Kang, Seo-Li;Hong, Suk-Young;Kim, Yi-Hyun;Lee, Kyung-Do;Na, Sang-Il;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The increasing demands and utilization of the multi-purpose satellites have led to diverse research activities with regards to satellite image processing and applications. In this paper, the research activities of satellite images is investigated relevant to domestic agricultural activities in past 5 years and the system characteristics of the related spaceborne payload is analyzed. For this purpose, a broad range of research materials has been collected published in past years and a statistical analysis is performed to classify the use of satellite images. Overall the current work is aimed to carry out a comprehensive analysis on the current status of satellite imaging in agricultural sectors. Furthermore, this paper can be utilized to identify and support the incoming satellite development plan utilizing medium imaging capabilities specially in the field of agricultural uses.

Relationship between terrain/satellite image and geology of the southern part of the Bandung, Indonesia (인도네시아 반둥 남부 지역에서의 지형/위성영상 분석결과와 지질과의 상관성 연구)

  • 김인준;이사로
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • The purpose of this study is the analyses of the relationship between geology and terrain/satellite image in the southern part of the Bandung, Indonesia to provide basic information fur geological survey. For this, topography, geology and satellite image were constructed to spatial database. Digital elevation, slope, aspect, curvature, hill shade of topography were calculated from the topographic database and lithology was imported from the geologi-cal database. Lineament, lineament density, and NDVI were extracted the Landsat TM satellite image. The results showed the close relationship between geology and terrain and satellited image. Each sedimentary rocks seldom correspond with geology and analyses of topography but as a whole fur sedimentary rocks coincide with them. Tuff and volcanic breccia in the volcanic rocks correspond with the result of terrain analyses. Talus deposit is well matched with the analyses of topography/satellite image.

Improvement of KOMPSAT-5 Image Resolution for Target Analysis (객체 분석을 위한 KOMPSAT-5 영상의 해상도 향상 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • A synthetic aperture radar(SAR) satellite is more effective than an optical satellite for target analysis because an SAR satellite can provide two-dimensional electromagnetic scattering distribution of a target during all-weather and day-and-night operations. To conduct target analysis while considering the earth observation interval of an SAR satellite, observing a specific area as wide as possible would be advantageous. However, wider the observation area, worse is the resolution of the associated SAR satellite image. Although conventional methods for improving the resolution of radar images can be employed for addressing this issue, few studies have been conducted for improving the resolution of SAR satellite images and analyzing the performance. Hence, in this study, the applicability of conventional methods to SAR satellite images is investigated. SAR target detection was first applied to Korea Multipurpose Satellite-5(KOMPSAT-5) SAR images provided by Korea Aerospace Research Institute for extracting target responses. Extrapolation, RELAX, and MUSIC algorithms were subsequently applied to the target responses for improving the resolution, and the corresponding performance was thereby analyzed.

A Semi-Automatic Building Modeling System Using a Single Satellite Image (단일 위성 영상 기반의 반자동 건물 모델링 시스템)

  • Oh, Seon-Ho;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.451-462
    • /
    • 2009
  • The spread of satellite image increases various services using it. Especially, 3D visualization services of the whole earth such as $Google\;Earth^{TM}$ and $Virtual\;Earth^{TM}$ or 3D GIS services for several cities provide realistic geometry information of buildings and terrain of wide areas. These service can be used in the various fields such as urban planning, improvement of roads, entertainment, military simulation and emergency response. The research about extracting the building and terrain information effectively from the high-resolution satellite image is required. In this paper, presents a system for effective extraction of the building model from a single high-resolution satellite image, after examine requirements for building model extraction. The proposed system utilizes geometric features of satellite image and the geometric relationship among the building, the shadow of the building, the positions of the sun and the satellite to minimize user interaction. Finally, after extracting the 3D building, the fact that effective extraction of the model from single high-resolution satellite will be show.

Research and Application of Satellite Orbit Simulation for Analysis of Optimal Satellite Images by Disaster Type : Case of Typhoon MITAG (2019) (재난유형별 최적 위성영상 분석을 위한 위성 궤도 시뮬레이션 연구 및 적용 : 태풍 미탁(2019) 사례)

  • So-Mang, LIM;Ki-Mook, KANG;Eui-Ho, HWANG;Wan-Sik, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.210-221
    • /
    • 2022
  • In order to promptly respond to disasters, the era of new spaces has opened where satellite images with various characteristics can be used. As the number of satellites in operation at home and abroad increases and the characteristics of satellite sensors vary, it is necessary to find satellite images optimized for disaster types. Disaster types were divided into typhoons, heavy rains, droughts, forest fires, etc., and the optimal satellite images were selected for each type of disaster considering satellite orbits, active/passive sensors, spatial resolution, wavelength bands, and revisit cycles. Each satellite orbit TLE (Two Line Element) information was applied to the SGP4 (Simplified General Perturbations version 4) model to develop a satellite orbit simulation algorithm. The developed algorithm simulated the satellite orbit at 10-second intervals and selected an accurate observation area by considering the angle of incidence of each sensor. The satellite orbit simulation algorithm was applied to the case of Typhoon Mitag in 2019 and compared with the actual satellite list. Through the analyzed results, the time and area of the captured image and the image to be recorded were analyzed within a few seconds to select the optimal satellite image according to the type of disaster. In the future, it is intended to serve as a basis for building a system that can promptly request and secure satellite images in the event of a disaster.

A Procedure to Select the Optimum Resolution for Satellite Imagery (위성영상의 적정 해상도 탐색 방안에 관한 연구)

  • 구자용;황철수
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • The geographical phenomena in space are well observed in the specific scale. This scale is called the operational scale. For an analysis of the optimum scale, it is needed to measure and represent the characteristics of attribute information extracted from the satellite imagery. The development of remote sensing technique makes various images with different resolution available. Researchers can select the image with optimum resolution for their analysis among various resolutions. For an effective analysis of the scale characteristics of satellite image, we investigated the characteristics of attribute information extracted from satellite image with different resolution. The two stage-procedure for exploring the optimum resolution proposed in this study was tested by applying to the satellite imagery covering Sunchon bay. This procedure can be an effective tool utilizing the scale characteristics of attribute information extracted from satellite imagery.

Evaluation on extraction of pixel-based solar zenith and offnadir angle for high spatial resolution satellite imagery (고해상도 위성영상의 화소기반 태양 천정각 및 촬영각 추출 및 평가)

  • Seong, Seon Kyeong;Seo, Doo Chun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.563-569
    • /
    • 2021
  • With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.

Urban Growth Analysis Through Satellite Image and Zonal Data (도시성장분석상 위상영상자료와 구역자료의 통합이용에 관한 연구)

  • Kim, Jae-Ik;Hwang, Kook-Woong;Chung, Hyun-Wook;Yeo, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Nowadays, a satellite image is widely utilized in identifying and predicting urban spatial growth. It provides essential informations on horizontal expansion of urbanized areas. However, its usefulness becomes very limited in analyzing density of urban development. On the contrary, zonal data, typically census data, provides various density information such as population, number of houses, floor information within a given zone. The problem of the zonal data in analyzing urban growth is that the size of the zone is too big. The minimum administration unit, Dong, is too big to match the satellite images. This study tries to derive synergy effects by matching the merits of the two information sources-- image data and zonal data. For this purpose, basic statistical unit (census block size) is utilized as a zonal unit. By comparing the image and zonal data of 1985 and 2000 of Daegu metropolitan area, this study concludes that urban growth pattern is better explained when the two types of data are properly used.

  • PDF

Modelling of Image Acquisition Scenario and Verification of Mission Planning Algorithm for SAR Satellite (SAR위성의 영상획득 시나리오 모델링 및 임무설계 알고리즘 성능검증)

  • Shin, Hohyun;Kim, Jongpil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.590-598
    • /
    • 2019
  • Today, satellites are widely used in many fields like communication and image recoding. The image acquired by satellites contains variety information of wide region. Therefore, they are used for agriculture, resource exploitation and management, and military purpose. The satellite is required to acquire images effectively in a given time period. Because the period that satellites can acquire images is very restrictive. In this study, the modeling of processing time and attitude maneuvering for satellite image acquisition is performed. From this modeling, mission planning algorithm using heuristic evaluation function is suggested and performance of the proposed algorithm is verified by numerical simulation.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.