• Title/Summary/Keyword: 위반 검지율

Search Result 9, Processing Time 0.01 seconds

Development of Vehicle Detection System for Vehicle Violating the Operation of Multi-Seater Private Lane (다인승 전용차로 위반차량의 검지 시스템 개발)

  • Gunhyoung Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.643-644
    • /
    • 2023
  • 본 논문에서는 고속도로 전용차로에서의 운행기준을 위반한 차량을 검지하는 시스템을 제안한다. 다인승 탑승차를 별도의 차로로 통행하도록 하여 혼잡도를 해소하겠다는 정책을 시행하고 있으며, 9인승 이상 차량에 6인 이상 텁숭자를 다인승 통행차량으로 정의하며, 이러한 기준을 만족하지 않는 차량을 자동 검지하는 시스템이다. 트리거 신호 검지기와 4조의 적외선 카메라로 차량 내부 촬영하고 결과 이미지를 분석하여 자동으로 다인승 차량을 판별하여 운행 위반을 검지한다. 테스트 결과 주야간에 관계없이 80% 이상의 우수한 검지율을 나타내었다.

  • PDF

A Study on Development of Systems to Enforce the interfering Cars on the Ramp (끼어들기 단속시스템 개발 연구)

  • Lee, Ho-Won;Hyun, Cheol-Seung;Joo, Doo-Hwan;Jeong, Jun-Ha;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.7-14
    • /
    • 2012
  • We frequently confront with cars interfering into our lane on the ramp. We suffered from serious traffic congestion due to the interfering cars. But the police enforcement has not done actively because it's hard to enforce. In this study, we have evaluated the systems to enforce cutting-in cars through the field test. Generally, the image processing method depends on the weather. To overcome this limitation we proposed a new algorithm combined with section detection method. In the filed test we concluded the results as follows. Whereas the violation detection rate of the general image processing was 58.2%, a new algorithm proposed by this study was 74.5%. And, an error rate enforcing vehicles that do not violate was 0.0%. Also, we can use the existing facilities, such as street light because of compact and lightweight systems which are integrated camera with controller. Therefore, we concluded that it is possible to enforce the interfering Cars using vehicle enforcement systems.

Directions in Development of Enforcement System for Moving Violation in Intersection (무인교통단속장비를 이용한 교차로 꼬리물기 단속 가능성 연구)

  • Lee, Ho-Won;Hyun, Cheol-Seung;Joo, Doo-Hwan;Kim, Dong-Hyo;Lee, Choul-Ki;Park, Dae-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.32-39
    • /
    • 2011
  • Even if the traffic light is green, if vehicles enter a jammed intersection, they are violation of the law. The police is enforcing law as a part of a nation wide campaign. Because, using the camcorder, the police can not do enforcement the offending vehicle, there are other techniques. Our research group proposed automated photographic equipment enable to enforce moving violation in intersection. Using new license plate recognition technology and backtracking technology to trace the offending vehicle, once the system detects a violator, it records 8 wide pictures and 1picture from the front vehicle, showing it enter and proceed through the intersection. Field experimental results obtained in the system, the following conclusions. The three measures of effectiveness investigated were recognition rate 83.5, mis-match recognition rate 1.5%.

Lane Violation Detection Using Corner-Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 감지)

  • Jeong, Sung-Hwan;Lee, Hee-Sin;Lee, Joonwhoan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.740-743
    • /
    • 2010
  • 본 논문에서는 컴퓨터 비젼에서 특징점 추적을 이용한 끼어들기 위반차량 검지 방법을 제안한다. 제안된 끼어들기 위반차량 검지 시스템의 전체적인 알고리즘은 영상 변환 및 전처리, 특징 추출, 추적대상 차량의 특징점 등록 및 추적, 끼어들기 위반차량 검지 등의 단계로 구성된다. 특히 형태학적 기울기 영상에서 특징점을 추출하므로 써 주간 및 야간 영상에 대해 동일한 알고리즘을 적용하여 그림자, 기상 조건, 차량 전조등 및 조명 등에 강인한 실시간성이 가능한 영상 검지 시스템을 구성 한다. 제안한 시스템을 끼어들기 금지구간에서 주간, 야간, 비 오는 날 야간에 취득한 영상을 사용하여 실험한 결과 정인식률 99.49%와 오류율 0.51%를 보였으며, 실시간처리에 문제가 없는 초당 91.34프레임의 빠른 처리속도를 나타냈다.

Lane Violation Detection System Using Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.36-44
    • /
    • 2009
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

  • PDF

Real-time Lane Violation Detection System using Feature Tracking (특징점 추적을 이용한 실시간 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.201-212
    • /
    • 2011
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorism in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. The feature is extracted from the morphological gradient image, which results in constructing robust detection system against shadows, weather conditions, head lights and illumination conditions without distinction day and night. The system shows excellent performance for the data captured at day time, night time, and rainy night time as much as 99.49% for positive recognition ratio and 0.51% for error ratio. Also the system is so fast as much as 91.34 frames per second in average that it may be possible for real-time processing.

A Study on the Measurement of Intruding Vehicles Enforcement System of Traffic Jam (끼어들기위반 단속장비의 교통정체 측정에 관한 연구)

  • Yoo, Sung-Jun;Kim, Jun-Ha;Hong, Soon-Jin;Kang, Soo-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.68-77
    • /
    • 2013
  • This study suggested experimental study results of congestion detection method for intruding vehicle enforcement system. This congestion detection method is developed to determine optimal operation criteria of intruding vehicle enforcement system as detecting traffic congestion. In ITS sector, traffic management systems generally have used a sectional travel speed for congestion detection. However, image sensors have high error rate of congestion detection because of speed error. This study suggested comprehensive congestion detection criteria based on speed and occupancy rate using field studies. As field study results, the proposed intruding vehicle enforcement system using image sensor is capable of accurately detecting the traffic congestion using sectional speed of 20km/h and occupancy rate of 60% as congestion detection criteria.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Freeway Bus-Only Lane Enforcement System Using Infrared Image Processing Technique (적외선 영상검지 기술을 활용한 고속도로 버스전용차로 단속시스템 개발)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • An automatic freeway bus-only lane enforcement system was developed and assessed in a real-world environment. Observation of a bus-only lane on the Youngdong freeway, South Korea, revealed that approximately 99% of the vehicles violated the high-occupancy vehicle (HOV) lane regulation. However, the current enforcement by the police not only exhibits a low enforcement rate, but also induces unnecessary safety and delay concerns. Since vehicles with six passengers or higher are permitted to enter freeway bus-only lanes, identifying the number of passengers in a vehicle is a core technology required for a freeway bus-only lane enforcement system. To that end, infrared cameras and the You Only Look Once (YOLOv5) deep learning algorithm were utilized. For assessment of the performance of the developed system, two environments, including a controlled test-bed and a real-world freeway, were used. As a result, the performances under the test-bed and the real-world environments exhibited 7% and 8% errors, respectively, indicating satisfactory outcomes. The developed system would contribute to an efficient freeway bus-only lane operations as well as eliminate safety and delay concerns caused by the current manual enforcement procedures.