• Title/Summary/Keyword: 원형강관기둥

Search Result 56, Processing Time 0.022 seconds

A study on improved analytic method for the bond stress between concrete and steel tube in CFT column (CFT기둥에서 강관과 콘크리트 부착응럭의 해석기법 개선에 관한 연구)

  • Seok, Keun-Yung;Ju, Gi-Su;Choi, Joon-Young;Chae, Seoung-Hun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.83-90
    • /
    • 2007
  • Buildings become high and large. CFT(Concrete Filled steel Tube) columns have been developed to manage effectively that loads which columns support and cross sections of columns are increased. Because CFT column is the composite structure made of two different materials, many researches have been performed to look into mechanical behaviors. This study is an analytic study about bond stress on interface between concrete core and steel tube in circular and rectangular CFT columns. ABAQUS/Standard Version 5.8 is used to analyze bond stress by bond form and position of shear-connector, and improved analystic method about mechanical characters on interface is suggested.

  • PDF

A Study on the Compression Strength of Structural Steel Tube Applied in Spatial Structure (공간구조에 적용되는 일반구조용 강관의 압축내력에 관한 연구)

  • Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.83-93
    • /
    • 2008
  • Space truss is a rational system which forming large span in spatial structure and the steel tube is used well as a structure member in truss system. This study includes coupon test and Stub-column compression test on the structural steel tube. The compression test of Stub-column was performed to characterize and quantify the material characteristic and strength of column. In this study, we also researched the matter of compatibility, in which we compared the experiment formula and the abstract formula by the application of the LSD standard formula, SSRC and ECCS multiple column curve.

  • PDF

The Specified Minimum Yield Stress of SM570TMC in CFT Composite Columns (SM570TMC강을 이용한 콘크리트충전강관 합성기둥의 설계기준 항복강도)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.205-213
    • /
    • 2008
  • The objective of this study is to evaluate the yield stress of SM570TMC CFT column subject to axial force. These columns were evaluated and compared by statistical tests, during which the displacements and axial loads of column specimens were measured. Test results showed that the yield stress of CFT columns under axial load could be predicted using the previously proposed the yield stress of steel columns.

Confining Effect of an Internal Steel Tube in a Circular Hollow RC Column (원형 강관 삽입 중공 RC 기둥의 내부구속 효과 연구)

  • Han, Taek Hee;Kim, Hong Jung;Kim, Young Jong;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.565-575
    • /
    • 2006
  • When concrete is confined, its strength is enhanced by confining stress. Thus, increasing confining stress makes concrete strength higher. But a brittle failure may occur in hollow RC(Reinforced Concrete) column although its concrete is confined by transverse reinforcements. This brittle failure results from the absence of internal confinement and it decreases the strength and the ductility of a hollow RC column. To overcome this brittle failure problem, a hollow RC column which has a internal steel tube was developed. In this study, an experiment was performed to investigate the existence of to internal confinement by a settled steel tube. Thirty six specimens were tested and test results show the existence of internal confinement by the increase of concrete strength.

Nonlinear Analysis of a Circular CFT Column Considering Confining Effects (구속 효과를 고려한 원형 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Yi, Gyu-Sei;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • An analysis program to predict the behavior of a concrete filled steel tube column (CFT) was developed. It considered confining effect, material nonlinearity, strain hardening of steel, and initial axial load. With the developed program, axial load-bending moment interaction analyses, moment-lateral displacement relation analyses, and lateral load-lateral displacement relation analyses were performed. For the verification of the developed program, analysis results were compared with the test results from the other researches. The verified results showed that the developed program predicted the behavior of the CFT column with agreeable accuracy. And they showed that it is necessary to consider the confining effect for the reasonable analysis of the CFT column. A simple parametric study was performed and it chose the strength of unconfined concrete and the thickness of a steel tube as the major parameters affecting the behavior of the CFT column. The parametric analysis results showed that the CFT column had higher strength and smaller ductility by increasing the strength of concrete. But the CFT column showed higher strength and larger ductility by increasing the thickness of the steel tube.

Axial Loading Behaviors and ACI 440 Code Applied Ultimate Axial Strength Formula of CFRP Strengthened Circular CFT Columns (탄소섬유쉬트로 보강된 원형CFT기둥의 압축거동과 ACI 440 code를 응용한 압축내력예측식 제안)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • This study investigates the axial behavior of CFRP strengthened circular CFT columns and proposes the design formula of CFRP strengthened circular CFT columns. 10 specimens were prepared and axial loading test were conducted to investigate the retrofitting effects of CFRP composites on CFT columns. The main parameters are the number of FRP sheets and D/t ratio. Test results showed that the CFRP retrofitting enhanced the load bearing capacity of the circular CFT columns. Finally, A ACI 440 code applied ultimate axial strength formula is proposed to predict the ultimate strength of CFRP strengthened circular CFT columns. The proposed formula are good agreement with the test results.

Ductility Capacity for Concrete Filled Steel Circular Tubes Reinforced by Carbon Fiber Sheets(CFSs) (탄소섬유쉬트로 보강된 콘크리트충전 원형강관기둥의 연성능력)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • This paper presents the experiment results for a CFT column confined by carbon fiber sheets(CFSs) under an axial load. Nine specimens were constructed and axial compression tests were conducted. The main experiment parameters were diameter-thickness ratio(D/t), reinforcing CFSa, and the attachment of a cushion gap between surface of steel tube and CFSs. The load-displacement curves of the specimens were obtained from the compression tests. Finally, it was concluded that the CFT column with a gap had grater ductility capacity improvement that the CFT column confined by CFSs.

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.