• Title/Summary/Keyword: 원격탐사 알고리즘 시스템

Search Result 118, Processing Time 0.023 seconds

A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California (YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로)

  • Park, Sangchul;Park, Yeongbin;Jang, Soyeong;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1463-1478
    • /
    • 2022
  • Maritime transport accounts for 99.7% of the exports and imports of the Republic of Korea; therefore, developing a vessel monitoring system for efficient operation is of significant interest. Several studies have focused on tracking and monitoring vessel movements based on automatic identification system (AIS) data; however, ships without AIS have limited monitoring and tracking ability. High-resolution optical satellite images can provide the missing layer of information in AIS-based monitoring systems because they can identify non-AIS vessels and small ships over a wide range. Therefore, it is necessary to investigate vessel monitoring and small vessel classification systems using high-resolution optical satellite images. This study examined the possibility of developing ship monitoring systems using Compact Advanced Satellite 500-1 (CAS500-1) satellite images by first training a deep learning model using satellite image data and then performing detection in other images. To determine the effectiveness of the proposed method, the learning data was acquired from ships in the Yellow Sea and its major ports, and the detection model was established using the You Only Look Once (YOLO) algorithm. The ship detection performance was evaluated for a domestic and an international port. The results obtained using the detection model in ships in the anchorage and berth areas were compared with the ship classification information obtained using AIS, and an accuracy of 85.5% and 70% was achieved using domestic and international classification models, respectively. The results indicate that high-resolution satellite images can be used in mooring ships for vessel monitoring. The developed approach can potentially be used in vessel tracking and monitoring systems at major ports around the world if the accuracy of the detection model is improved through continuous learning data construction.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

3D Terrain Rendering using Contour Line Data (등고선 데이터를 이용한 3차원 지형 렌더링)

  • 김성수;김경호;이종훈;양영규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.625-627
    • /
    • 2001
  • 기존의 종이지도를 수치지도 처리과정으로 얻어진 등고선(contour line) 데이터는 원격탐사(Remote Sensing)와 지리정보시스템(GIS)의 응용분야에서 주로 사용되어지는 데이터이다. 이러한 등고선은 해당 지역의 DTM(Digital Terrain Model) 데이터 생성을 위해 보간(interpolation)하여 생성하는 데 연구가 집중되어 왔다. 본 논문에서는 DEM(Digital levation Model)으로부터 얻어진 등고선 데이터를 이용하여 사용자에게 3차원으로 가시화 해 줄 수 있는 기법을 소개한다. 등고선 추출을 위한 방법으로는 기존의 소개되어진 Marching Square 알고리즘을 적용하였고, 지역적인 최고점(local minimum)과 최소점(maximum)을 구하기 위해 등고선을 열린 등고선(open contour)과 닫힌 등고선(closed contour)으로 분류하게 된다. 지역적 최고, 최소점을 찾기 위한 탐색공간을 줄이기 위해 닫힌 등고선만을 닫힌 등고만을 대상으로 등고선 트리를 생성하였으며, 생성된 트리의 리프노드에 대해서 최고, 최소점에 대한 근사(approximation)를 수행하게 된다. 이렇게 구해진 근사된 장점들과 등고선 데이털 입력으로 하여 제한된 딜로니 삼각분할(Constrained Delaunay Triangulation)을 수행함으로써, 3차원 지형을 재구성할 수 있다. 실험에서 간단한 그리드 샘플데이터와 USGS로 획득한 데이터를 이용하여 속도 측정을 하였다. 결과적으로 저장공간 측면에서 적은 량의 데이터를 가지면서 등고선을 표현할 수 있는 3차원 지형을 랜더링할 수가 있음을 알 수 있다.

  • PDF

Determination of Weight of Landslide Related Factors using GIS and Artificial Neural Network in the Kangneung Area (원격탐사, 지리정보시스템(GIS) 및 인공신경망을 이용한 강릉지역 산사태 발생 요인의 가중치 분석)

  • 이명진;이사로;원중선
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.487-492
    • /
    • 2004
  • 본 연구에서는 인공신경망 기법을 이용하여 산사태 발생원인에 대한 가중치를 구하였다. 여름철 집중호우시 산사태가 많이 발생하는 강원도 강릉시 사천면 사기막리 와 주문진읍 삼교리에 해당한다. 산사태가 발생할 수 있는 요인으로 지형도로부터 경사, 경사방향, 곡률, 수계추출을, 정밀토양도로부터 토질, 모재, 배수, 유효토심, 지형을, 임상도로부터 임상, 경급, 영급, 밀도를, 지질도로부터 암상을, Landsat TM 영상으로부터 토지이용도와 추출하여 격자화 하였으며, 아리랑1호 영상으로부터 선구조를 추출하여 l00m 간격으로 버퍼링 한 후 격자화 하였다. 이렇게 구축된 산사태 발생 위치 및 발생요인 데이터 베이스를 이용하여 인공신경망 기법을 적용하여 산사태 발생 원인에 대한 상대적인 가중치를 구하였다. 인공신경망의 역전파 알고리즘을 이용한 사기막리 지역과 삼교리 지역의 산사태 가중치를 보면 GPS를 이용한 현장조사와 위성영상을 이용한 변화탐지 기법모두의 경우모두와 훈련지역을 실제 산사태 발생 지역과 경사도가 0°인 지역, 실제 산사태 발생 지역과 Frequence ratio를 이용하여 작성한 취약성도에서 산사태 발생이 낮을 것으로 예상되는 지역, Frequence ratio를 이용한 취약성도에서 산사태 발생이 높을 것으로 예상되는 지역 과 낮을 것으로 예상되는 지역의 경우에서도 경사도는 1.5~2.5배정도 높은 상대적 가중치를 나타냈다. 이러한 가중치는 산사태 취약성도를 작성하는데 활용될 수 있다.

  • PDF

Terrain Reconstruction from Contour Lines (등고선을 이용한 지형 재구성)

  • Kim, Sung-Soo;Lee, Seong-Ho;Lee, Jong-Hun;Yang, Young-Kyu
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.641-644
    • /
    • 2001
  • 기존의 종이지도를 수치지도 처리과정으로 얻어진 등고선(contour line) 데이터는 원격탐사(Remote Sensing)와 지리정보시스템(GIS)의 응용분야에서 주로 사용되어지는 데이터이다. 이러한 등고선은 해당 지역의 DTM(Digital Terrain Model) 데이터 생성을 위해 보간(interpolation)하여 생성하는 데 연구가 집중되어 왔다. 본 논문에서는 DEM(Digital Elevation Model)으로부터 얻어진 등고선 데이터를 이용하여 사용자에게 3 차원으로 가시화 해 줄 수 있는 기법을 소개한다. 등고선 추출을 위한 방법으로는 기존의 소개되어진 Marching Square 알고리즘을 적용하였고, 지역적인 최고점(local minimum)과 최소점(maximum)을 구하기 위해 등고선을 열린 등고선(open contour)과 닫힌 등고선(closed contour)으로 분류하게 된다. 지역적 최고, 최소점을 찾기 위한 탐색공간을 줄이기 위해 닫힌 등고선만을 대상으로 등고선 트리를 생성하였으며, 생성된 트리의 리프노드에 대해서 최고, 최소점에 대한 근사(approximation)를 수행하게 된다. 이렇게 구해진 근사된 정점들과 등고선 데이터를 입력으로 하여 제한된 딜로니 삼각분할(Constrained Delaunay Triangulation)을 수행함으로써, 3 차원 지형을 재구성할 수 있다. 실험에서 USGS 로부터 획득한 지형 데이터를 이용하여 속도 측정을 하였다. 결과적으로 저장공간 측면에서 적은 량의 데이터를 가지면서 등고선을 표현할 수 있는 3 차원 지형을 렌더링 할 수 있음을 알 수 있다.

  • PDF

Analysis of the Impact of Surface Reflectance Error Retrieved from 6SV for KOMPSAT-3A according to MODIS AOD Expected Error (MODIS AOD 기대 오차에 따른 6SV 기반 KOMPSAT-3A 채널별 지표반사도 오차 영향 분석)

  • Daeseong Jung;Suyoung Sim;Jongho Woo;Nayeon Kim;Sungwoo Park;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1517-1522
    • /
    • 2023
  • This study evaluates the impact of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) expected error (EE) on the accuracy of surface reflectance (SR) derived from the KOMPSAT-3A satellite, utilizing the Second Simulation of the Satellite Signal in the Solar Spectrum Vector radiative transfer model. By considering a range of ground-based AOD and the resultant MODIS AOD EE, the research identifies significant influences on SR accuracy, particularly under high solar zenith angles(SZA) and shorter wavelengths. The study's simulations reveal that SR errors increase with shorter wavelengths and higher SZAs, highlighting the necessity for further research to improve atmospheric correction algorithms by incorporating wavelength and SZA considerations. Additionally, the study provides foundational data for better understanding the use of AOD data from other satellites in atmospheric correction processes and contributes to advancing atmospheric correction technologies.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Velocity Estimation of Moving Targets by Azimuth Differentials of SAR Images (SAR 영상의 Azimuth 차분을 이용한 움직이는 물체의 속도측정방법)

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well blown phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We propose a method for estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on a phenomenon that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and then the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved from the constant phase difference. This technique was tested using an ENVISAT ASAR image in which several unknown ships are presented. In the case of a isolated target, the result was nearly coincident with the result from conventional method. However, in the case of a target which is located near non-target material, the difference of the result between from our algorithm and from conventional method was more than 1m/s.