• Title/Summary/Keyword: 운용시간

Search Result 1,235, Processing Time 0.031 seconds

A study on data sharing system based on threshold quorum consensus for fairness in permissioned blockchain (허가된 블록체인에서의 공정성을 보장하는 임계값 쿼럼 합의 기반의 데이터 공유 시스템에 관한 연구)

  • Ra, Gyeongjin;Lee, Imyeong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.334-336
    • /
    • 2021
  • 허가형 블록체인 기반 데이터 공유 시스템은 분산 환경에서 신뢰 수준을 구축하고 일관된 메시지를 기록 및 공유함으로써 서비스의 상호 운용성을 가능하게 한다. 그러나 허가형 블록체인은 종종 탈중앙화, 보안 및 상호 운용성과 충돌한다. 이는 중앙 집중식 시스템으로 돌아가거나 데이터의 독점 및 남용 및 오용으로 이어질 수 있다. 따라서 CAP (Consistency, Availability, Partition tolerance)에 이론 검증에 따라 메시지 공유, 비잔틴 내결함성 및 메시지 일관성을 고려하고 적용해야 한다. 기존의 PBFT(Practical Byzantine Fault Tolerance) 합의 알고리즘는 노드의 증가시, 장애내성을 갖기위해 계산되어야 할 합의 처리시간이 증가하며, DPOS(Delegated Proof of Stake) 알고리즘은 보상, 리더 선출의 공정성 문제 등에 따라 허가형 블록체인에서의 적합한 방식이 연구되고 있다. 본 논문에서는 서비스의 상호 운용성과 과제에 대해 논의하고 허가된 블록체인의 합의 개선을 통한 데이터 공유 시스템을 제안한다.

Additional CSP calculation method considering Human Error (휴먼에러를 고려한 추가 CSP 산정 방안)

  • Baek, Sung-Il;Ha, Yun-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.759-767
    • /
    • 2021
  • Most weapons systems that are Force Integration are expensive equipment that reflects the latest technology, and the operation and maintenance cost is increasing continuously. Factors that efficiently operate and maintain these weapon systems include maintenance plans, economic costs, and repair part requirements. Among them, predicting the repair parts requirements during the life cycle in advance is an important way to increase operation and maintenance cost efficiency and operating availability. The start of requirement analysis for repair parts is a calculation of the CSP (CSP: Concurrent Spare parts, CSP hereafter) that is distributed when the weapon system is deployed. The CSP is an essential component of achieving the operating availability during this period because the weapon system aims to successfully perform a given operation mission without resupply for an initial set period. In the present study, the CSP calculation method was analyzed, reflecting the failure rate and operating time of items, but the analyzed CSP was aimed at preparing for technical failure, but in the initial operating environment, it is limited in coping with unexpected failures caused by human error. The failure is not included in the scope of free maintenance and is a serious factor in making the weapon system inoperable during the initial operation period. To prevent the inoperable status of a weapon system, CSP that considers human error is required in the initial operating environment, and the calculation criteria and measures are proposed.

Evaluation method for interoperability of weapon systems applying natural language processing techniques (자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법)

  • Yong-Gyun Kim;Dong-Hyen Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.8-17
    • /
    • 2023
  • The current weapon system is operated as a complex weapon system with various standards and protocols applied, so there is a risk of failure in smooth information exchange during combined and joint operations on the battlefield. The interoperability of weapon systems to carry out precise strikes on key targets through rapid situational judgment between weapon systems is a key element in the conduct of war. Since the Korean military went into service, there has been a need to change the configuration and improve performance of a large number of software and hardware, but there is no verification system for the impact on interoperability, and there are no related test tools and facilities. In addition, during combined and joint training, errors frequently occur during use after arbitrarily changing the detailed operation method and software of the weapon/power support system. Therefore, periodic verification of interoperability between weapon systems is necessary. To solve this problem, rather than having people schedule an evaluation period and conduct the evaluation once, AI should continuously evaluate the interoperability between weapons and power support systems 24 hours a day to advance warfighting capabilities. To solve these problems, To this end, preliminary research was conducted to improve defense interoperability capabilities by applying natural language processing techniques (①Word2Vec model, ②FastText model, ③Swivel model) (using published algorithms and source code). Based on the results of this experiment, we would like to present a methodology (automated evaluation of interoperability requirements evaluation / level measurement through natural language processing model) to implement an automated defense interoperability evaluation tool without relying on humans.

  • PDF

Optimal Operation Method and Capacity of Energy Storage System(ESS) in Primary Feeders with Step Voltage Regulator(SVR) (선로전압조정장치(SVR)가 설치된 고압배전선로에서 전기저장장치(ESS)의 최적운용 및 적정용량 산정방안)

  • Kim, Byungki;Ryu, Kyung-Sang;Kim, Dae-Jin;Jang, Moon-seok;Ko, Hee-sang;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.9-20
    • /
    • 2018
  • When a large-scale photovoltaic (PV) system is introduced into a distribution system, the customer's voltage may exceed the allowable limit ($220V{\pm}6%$) due to voltage variations and reverse power flow in the PV system. In order to solve this problem, we propose a method for adjusting the customer voltage using the existing step voltage regulator (SVR) installed in the primary feeder. However, due to the characteristics of a mechanically operating SVR, the customer voltage during the tap changing time of the SVR is likely to deviate from the allowable limit. In this paper, an energy storage system (ESS) with optimal operation strategies, and an appropriate capacity calculation algorithm are proposed, and the parallel driving scheme between the SVR and the ESS is also proposed to solve the customer voltage problem that may occur during the tap changing time of the SVR. The simulation results show that the allowable limit of the customer voltage is verified by the proposed methods during the tap changing time of the SVR when the large-scale PV system is connected to the distribution system.

Spacecraft Bus Initial Activation and Checkout of a LEO Satellite (저궤도 위성의 본체 초기 점검)

  • Jeon, Moon-Jin;Kwon, Dong-Young;Kim, Day-Young
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • A LEO Satellite performs automatic initial operations by FSW after separation from a launch vehicle. After initial operation by FSW is finished, preparation for normal operation is performed by ground during bus initial activation and checkout phase. First of all, we check state of health of the satellite including solar array deployment status. After then, each unit of spacecraft bus is activated and checked. After activation and checkout of every units used for normal operation, we check maneuver performance for imaging mission and orbit maintenance performance. Because the Bus IAC is performed during limited ground contact time, every detailed procedure must be designed considering ground contact. Therefore, the Bus IAC procedure is separated into several parts based on ground contact duration. In addition, the procedures for every possible operation including expected situation as results of IAC procedures and unexpected contingency situation must be prepared. The contingency operation is also designed based on ground contact duration. The LEO satellite was successfully launched and the Bus IAC was successfully performed. In this paper, we explain design concepts and execution results of Bus IAC.

OSMI를 이용한 달 촬영 가능 시각 결정을 위한 고속 시뮬레이터 개발

  • Kang, Chi-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • By utilizing OSMI (Ocean Scanning Multi-spectral Imager) onboard KOMPSAT-1, the moon can be imaged. Because the moon has no atmosphere and reflects sun lights at a constant rate, it can be the radiance source for calibration of OSMI. But there are a lot of risks which made KOMPSAT-1 enter into safe-hold mode. So planning the imaging of the moon with OSMI should be determined seriously with consideration to information on KOMPSAT-1 operation, the moon, the sun, etc. But it takes a long time for determining the imaging time of the moon using MCE(Mission Control Element) simulator and there are operational problems to be solved. In this paper, fast simulator for determining imaging time for the moon with OSMI has been developed. The proper timeline for imaging the moon and the position of the moon image in OSMI image coordinates and the phase of the moon are determined. STK was used for acquiring information on KOMPSAT-1, the moon, the sun and the characteristitcs of OSMI are considered. As a result, we can determine imaging time of the moon with OSMI much faster and efficiently.

  • PDF

Optimum Operation of Power System Using Fuzzy Linear Programming (퍼지 선형계획법을 적용한 전력계통의 최적운용에 관한 연구)

  • 박성대;정재길;조양행
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.

  • PDF

Correlativity between phenomenon of atmospheric refraction on sun interference and antenna elevation angles of satellite earth stations (태양 잡음 굴절 현상과 위성지구국 안테나 앙각과의 상관관계)

  • 김광영;이상설
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.37-44
    • /
    • 1993
  • The earth station antenna operating on a GEO communication satellite is influenced by sun interference in the period of the spring or the autumn eqinox. Such phenomena are also undertaken by ray-bending phenomena in atmosphere. Therefore the prediction time of sun interference does not theoretically match actual interference time. In this paper, the actual sun interference time has been analyzed in consideration of ray-bending phenomenon, the size of main reflector of earth station antenna and elevation angle between an earth station antenna and a satellite. Ray-bending phenomenon in atmosphere is proved to be disregarded if the Mugungwha satellite is luanched in 1995. The analysis results are compared with actual measurement values of sun interference time at local earth stations and the two data are in accord well.

  • PDF

A Generalization of CCTV Setting in Smart Surveillance System (스마트 관제 시스템에서 CCTV 설정의 일반화)

  • Kim, Kiyong;Lee, Keonbae
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.266-273
    • /
    • 2018
  • Smart surveillance system obtains the positional information of users using GPS receivers embedded in smart devices, and provide them with services of tracking, monitoring, and protecting by controlling CCTVs nearby them. In order to apply and operate these systems to new environment, the overall setup process of the system is increased proportionally to the number of CCTVs. Therefore if there is a large number of CCTVs, the amount of time required during the setup process is very lengthy, and the operation of them becomes inoperable. In this paper, we propose a method to reduce these setting process. As the result of applying and simulation the proposed method, the setup method is simple, and as the CCTV increases, it consumes less time the previous system, and the system can be operated during setup.

Effective Response Time Verify of Active Decoy Against Anti-Ship Missile Using DEVS Simulation (DEVS 시뮬레이션을 사용한 능동기만기의 대함미사일에 대한 효과적인 대응시간 검증)

  • Choi, Soon-Ho;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.495-501
    • /
    • 2015
  • Abroad warships are confronted with various menaces. The most critical threat of the warship is an Anti-Ship Missile (ASM). The ASM is able to be launched at a variety of environments and platforms. The ASM can evades conventional naval radar systems and electronic countermeasure techniques for providing a fatal damage to the warship. To cope with the ASM, an active decoy is an effective method to minimize the direct damage to the warship. The active decoy increases survivability of the warship because the ASM can lure pursuit of the active decoy instead of the warship. In this paper, our proposed method verifies an available response time of the active decoy to deal with the ASM using the active decoy of the warship in marine environments. We defined models of the warship, the ASM, and the active decoy, and executed simulation by combining the models. By the simulation result, the proposed method demonstrated the superiority of the mobile active decoy of the response time decoy among various active decoys, and estimated a protection area to prevent the ASM according the response time of the mobile active decoy against the ASM.