• Title/Summary/Keyword: 운용시간

Search Result 1,235, Processing Time 0.028 seconds

A Study on the Improvement of Naval Combat Management System for the Defense of Drone

  • Ki-Chang Kwon;Ki-Pyo Kim;Ki-Tae Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.93-104
    • /
    • 2023
  • Recently, the technology of drones is developing remarkably. The role of military drones is so great that they can cause serious damage to the enemy's important strategic assets without any damage to our allies in all battlefield environments (land, sea, air). However, the battleship combat management system currently operated by the Korean Navy is vulnerable to defense because there is no customized defense system against drones. As drones continue to develop, they are bound to pose a major threat to navy in the future. This paper proposes a way for the warfare software of naval combat management system sets a combat mode suitable for anti-drone battle, evaluates the threat priority in order to preemptively respond to drone threats and eliminate drone threats through automatic allocation of self-ship-mounted weapons and sensors, and through a test of the improved warfare software in a simulated environment, it was proved that the time to respond to the drone was improved by 62%.

Development of CanSat System for Vehicle Tracking based on Jetson Nano (젯슨 나노 기반의 차량 추적 캔위성 시스템 개발)

  • Lee, Younggun;Lee, Sanghyun;You, Seunghoon;Lee, Sangku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.556-558
    • /
    • 2022
  • This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.

  • PDF

Multiple Target Management of Air-to-Air mode on Airborne AESA Radar (항공기 탑재 AESA 레이다의 공대공 모드 다표적 관리 기법)

  • Yong-min Kim;Ji-eun Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.580-586
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to greatly improve multi-target tracking capability with high accuracy in comparison to traditional mechanically-scanned radar system. This paper is primarily concerned with the development of an efficient methodology for multi-target managenent with the context of multi-target environment employing AESA radar. In this paper, targets are stratified into two principal categories: currently displayed targets and non-display targets, predicated upon their relative priority. Displayed targets are subsequently stratified into TOI (target of interest), HPT (high priority target), and SAT (situational awareness target), based on the requisite levels of tracking accuracy. It also suggests rules for determining target priority management, especially in air-to-air mode including interleaved mode. This proposed approach was tested and validated in a SIL (system integration lab) environment, applying it to AESA radars mounted on aircraft.

A Study on Efficient Design of Surveillance RADAR Interface Control Unit in Naval Combat System

  • Dong-Kwan Kim;Dong-Han Jung;Won-Seok Jang;Young-San Kim;Hyo-Jo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.125-134
    • /
    • 2023
  • In this paper, we propose an efficient surveillance RADAR(RAdio Detection And Ranging) interface control unit(ICU) design in the naval combat system. The proposed design applied a standardized architecture for modules that can be shared in ship combat system software. An error detection function for each link was implemented to increase the recognition speed of disconnection. Messages that used to be sent periodically for human-computer interaction(HCI) are now only transmitted when there is a change in the datagram. This can reduce the processing load of the console. The proposed design supplements the radar with the waterfall scope and time-limited splash recognition in relation to the hit check and zeroing of the shot when the radar processing ability is low due to the adoption of a low-cost commercial radar in the ship. Therefore, it is easy for the operator to determine whether the shot is hit or not, the probability of wrong recognition can be reduced, and the radar's resources can be obtained more effectively.

A hybrid genetic algorithm for the optimal transporter management plan in a shipyard

  • Jun-Ho Park;Yung-Keun Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.49-56
    • /
    • 2023
  • In this study, we propose a genetic algorithm (GA) to optimize the allocation and operation order of transporters. The solution in the GA is represented by a set of lists each of which the operation order of the corresponding transporter. In addition, it was implemented in the form of a hybrid genetic algorithm combining effective local search operations for performance improvement. The local search reduces the number of operating transporters by moving blocks from a transporter with a low workload into that with a high workload. To evaluate the effectiveness of the proposed algorithm, it was compared with Multi-Start and a pure genetic algorithm through a simulation environment similar in scale to an actual shipyard. For the largest problem, compared to them, the number of transporters was reduced by 40% and 34%, and the total task time was reduced by 27% and 17%, respectively.

Development of Automatic Terrain Following Simulator Using Digital Terrain Elevation Data (디지털 지형 고도 데이터를 이용한 자동 지형 추종 시뮬레이터 개발)

  • Jisu Lee;MunGyou Yoo;Hyunju Lee;Ki Hoon Song;Dong-Ik Cheon;Sangchul Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-98
    • /
    • 2024
  • In this paper, an Automatic Terrain Following (ATF) Simulator using Digital Terrain Elevation Data (DTED) was proposed. This ATF Simulator consists of a Flight Simulator, a Radar Simulator, and a Terrain Following Computer (TFC) Simulator. DTED and radar scan data generated with DTED were used as the terrain information necessary for terrain following. The ATF Simulator provides three modes of operation: a passive mode that uses DTED, an active mode that uses radar scan data, and a hybrid mode that uses both. We developed an ATF Simulator that could reduce the cost and time required to develop a terrain following system using the LabVIEW development environment and the MATLAB App Designer development environment. It was verified by confirming that the ATF Simulator met all functional requirements.

Simulation of The Effective Distribution of Droplets and Numerical Analysis of The Control Drone-Only Nozzle (방제드론 전용노즐의 유효살포폭 내 액적분포 및 수치해석 시뮬레이션)

  • Jinteak Lim;Sunggoo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.531-536
    • /
    • 2024
  • Control drones, which are recently classified as smart agricultural machines in the agricultural field, are striving to build smart control and automatic control systems by combining hardware and software in order to shorten working hours and increase the effectiveness of control in the aging era of rural areas. In this paper, the characteristics of the nozzle dedicated to the control drone were analyzed as a basic study for the establishment of management control and automatic control systems. In order to consider various variables such as the type of various drone models, controller, wind, flight speed, flight altitude, weather conditions, and UAV pesticide types, related studies are needed to be able to present the drug spraying criteria in consideration of the characteristics and versatility of the nozzle. Therefore, to enable the consideration of various variables, flow analysis (CFD) simulation was conducted based on the self-designed nozzle, and the theoretical and experimental values of the droplet distribution were compared and analyzed through water reduction experiments. In the future, we intend to calculate accurate scattering in consideration of various variables according to drone operation and use it in management control and automatic control systems.

Blockchain based SDN multicontroller framework for Secure Sat_IoT networks (안전한 위성-IoT 네트워크를 위한 블록체인 기반 SDN 분산 컨트롤러 구현)

  • June Beom Park;Jong Sou Park
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.141-148
    • /
    • 2023
  • Recent advancements in the integration of satellite technology and the Internet of Things (IoT) have led to the development of a sophisticated network ecosystem, capable of generating and utilizing vast amounts of big data across various sectors. However, this integrated network faces significant security challenges, primarily due to constraints like limited latency, low power requirements, and the incorporation of diverse heterogeneous devices. Addressing these security concerns, this paper explores the construction of a satellite-IoT network through the application of Software Defined Networking (SDN). While SDN offers numerous benefits, it also inherits certain inherent security vulnerabilities. To mitigate these issues, we propose a novel approach that incorporates blockchain technology within the SDN framework. This blockchain-based SDN environment enhances security through a distributed controller system, which also facilitates the authentication of IoT terminals and nodes. Our paper details the implementation plan for this system and discusses its validation through a series of tests. Looking forward, we aim to expand our research to include the convergence of artificial intelligence with satellite-IoT devices, exploring new avenues for leveraging the potential of big data in this context.

Redundancy Management Method on Compact Flight Control Computer for AAV (AAV용 소형비행제어컴퓨터의 다중화 관리 방안)

  • Young Seo Lee;Ji Yong Kim;Duk Gon Kim;Gyong Hoon Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.459-465
    • /
    • 2024
  • The flight control computer applied to manned/unmanned aircraft is one of the key components directly connected to the control of the aircraft, and is generally designed with a redundant architecture so that essential functions for flight can be maintained even if a failure occurs in a single channel. The operational flight program loaded on these redundant flight control computers should be designed considering a time synchronization between channels, input data selection methods from redundant sensors, and fault detection/isolation methods for channels. In this paper, we propose a redundancy management method applied to triplex compact flight control computers for advanced air vehicle. The proposed redundancy management method includes a synchronization algorithm between triplex channels, an input data voting method from sensors, a bus control right selection method for control command output, and a fault detection/isolation method for channels.

A Study on the Accuracy of the Loran-C Fix of Korean Chain in Pusan Area (부산지역에서의 Loran-C 한국체인의 측위정도에 관한 연구)

  • 박주삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.372-380
    • /
    • 1996
  • The operation of Far East Chain(GRI 5970) of Loran - C system had been stopped on June, 1995, but that of Korean Chain(GRI 9930) of Loran - C system which was jointed with North West Pacific Chain(GRI 8930) and Russia Chain(GRI 7950) by international cooperation, was started on January 1996. In this paper, in order to study the accuracy of Loran - C fix of Korean Chain, the authors examined and analyzed the data of the reciever of Loran - C(LC -90, Furuno) and GPS(AccNav Sport super (TM), Eagle) measured automatically and continually for 2 seconds at interval of 5 minutes from November 22, 1992, to January 20, 1996 at the fixed position of National Fisheries University of Pusan, The results obtained were as follows ; 1)The mean time differences of M-W, M-X, and M-Y pair measured in the base observed position were 12333.09${\mu}$s, 28338.44${\mu}$s, and 42806.01${\mu}$s respectively and the mean standard deviations of that were 0.0121${\mu}$s, 0.0290${\mu}$s, and 0.0327${\mu}$s respectively. The daily and monthly variance forms of time difference at each pair appeared in a similar reappearance. 2)The mean standard deviations of the latitude and longitude by Loran - C were 9.1m and 17.4m in W.X pair, 11.5m and 13.7m in W.Y pair, and 8.1m and 29.3m in X.Y pair respectively, and then the probable radiuses within 95% of each pair were 39.2m, 35.7m, and 60.8m, respectively. Therefore, It is to be desired that W.Y par is selected to improve the accuracy in Pusan area. 3)The mean standard deviations of the latitude and longitude by GPS were 15.4m and 15.0m and the probable radius within 95% was 43.4m. 4)The position errors for GPS and each pair of Loran - C were 16.0m to the South in GPS and 265.2m to the East in W.X pair of Loran - C, 279.5m to the North in W.Y pair of that, and 224.3m to the North-West in X.Y pair of that, so GPS is about 250m higher than Loran - C in accuracy.

  • PDF