• Title/Summary/Keyword: 운동 정확도 측정

Search Result 254, Processing Time 0.027 seconds

Biceps Rerouting Technique(Modification of Clancy) for Posterolateral Rotatory Instability (대퇴이두건 전환술(Clancy 변형 술식)을 이용한 후외측 회전 불안정성의 재건)

  • Kim Sung-Jae;Shin Sang-Jin;Kim Jin-Yong;Rhee Dong-Joo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • Introduction : This study compared the clinical results with biceps rerouting fer the isolated posterolateral instability (PLI) and for the PLI combined with PCL injuries. Methods : 21 cases of isolated PLI (group I) and 25 cases of PLI combined with PCL rupture were included in the study. The PLI was reconstructed by modified biceps femoris rerouting technique with PCL reconstructions performed prior to the PLI correction in cases of combined injury The clinical results were reviewed and analyzed. Results : Pre-operatively positive reverse pivot shift test turned negative in 43 cases post-operatively. Increased preoperative external rotation thigh foot angle (ERTFA) showed significant differences between the two groups and all fell within normal limits post-operatively At a mean follow-up of 40.3 months, the average Lysholm knee score and. The Hospital for Special Surgery Knee Ligament Score for group I and group II revealed above 90 points without statistically significant difference between the groups. 3 cases of tenodesis failure developed and re-operation was performed. Discussion and Conclusion : The advantages of modified Clancy technique include reduced surgical damages to the iliotibial band and fixation of the biceps tendon at the isometric position. The modified biceps rerouting technique is recommended for the reconstruction of both isolated and combined PLI except in patients with severe damages at the attachment of biceps tendon.

  • PDF

SHRIMP Zircon Ages of the Basement Gneiss Complex in the Pyeongchang-Wonju Area, Gyeonggi Massif, Korea (명창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대 측정)

  • Song, Yong-Sun;Park, Kye-Hun;Seo, Jae-Hyeon;Jo, Hui-Je;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.99-114
    • /
    • 2011
  • Precambrian gneiss complex in the Pyeongchang-Wonju area, which lies west of the Paleozoic sedimentary basin of the Yeongwol-Taebaek area, is being considered as a part of the Gyeonggi massif, but its ages of formation and metamorphic events are not well defined yet. In this study, SHRIMP zircon U-Pb ages were determined from the gneiss complex in the area, We obtained the discrete ages of magmatic (ca. 1960 Ma) and metamorphic (ca. 1860 Ma) events through the interpretation of the SHRIMP data based on the internal structures of zircons. These are almost the same to the ages of main intrusion and metamorphism reported from the Precambrian basements of Gyeonggi, Yeongnam and Nangnim massifs of the Korean Peninsula, Ages of 3200~3300 Ma, 2900 Ma, 2660 Ma, 2430 Ma, 2260 Ma, and 2080~2070 Ma obtained from inherited cores of studied zircons are also very similar to the frequently reported ages from the basement rocks of the Gyeonggi and Yeongnam massifs, Lower intercept age of about 270 Ma calculated from the rim data seems to indicate that the study area suffered from a late Paleozoic metamorphism (Okcheon Orogeny), but we need more reasonable and sufficient data to confirm it. According to the results of this study, it is suggested that the Bangnim group unconformably overlying the gneiss complex was deposited after the Paleoproterozoic granitic magmatism (ca. 1960 Ma) and metamorphism (ca. 1860 Ma).

Development of Film Verification as the QA of IMRT for Advanced Hepatoma Patients (간암 환자의 세기조절 방사선치료에서 임상적응 가능한 QA 기법의 개발)

  • Kim Myung-Se
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Hepatoma is one of 3 most common malignancies in Korea, the survival rate is not improved since last decades because of delayed diagnosis and limited treatment conditions. Radiation was one of treatment options but the impact on the survival is not remarkable. High dose exposure to target area was suggested for improved effect but low tolerance dose of normal liver tissue is the main limited factor. IMRT is the advanced form of 3DCRT, for focusing high dose on target with minimal dose to surrounding normal tissues. Motion of the tumor by respiration, cardiac pulsation and peristalsis is the main treatment harrier of IMRT for treatment of hepatoma patients. Development of QA technique for acceptable geometrical uncertainties and dose error on target volume is essential for IMRT in clinical treatment but proper QA technique is not yet developed. This study compared the verification film dosimetry with measured dose in phantom and calculated dose in planning computer on exactly same conditions of patient treatments. Within 3% dose differences between 3 groups were confirmed. We suggest that our verification QA technique is easy, economic, iterative and acceptable in clinical application for advanced hepatoma patients.

  • PDF

Results of Arthroscopic Debridement of the Elbow Osteoarthritis (주관절 골관절염에서 관절경적 변연절제술 후 결과)

  • Chun, Churl-Hong;Kim, Jung-Woo;Lim, Jae-Chang
    • Clinics in Shoulder and Elbow
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Purpose: Primary osteoarthritis on the elbow is the result of the growth of osteophytes and contracture of the capsule. It often causes disability on joint motion and pain while exercising. As arthroscopy has developed, the arthroscopic diagnosis and treatment of the elbow have recently become more generalized as well. Therefore, we like to report on arthroscopy for treating elbow arthritis and its results. Materials and Methods: This study includes 23 cases of elbow arthritis that were seen between 2005 June to 2007 June and these patients didn't response to conservative treatment. From this we excluded 18 cases that underwent arthroscopic surgery and among these 18 cases, 6 cases underwent ulnar nerve transfer. The average observation time was 21.3 months and the average age was 48.4 years (range: 22-66 years). The pre and post operative pain was evaluated with using the Visual Analogue Scale (VAS) and functional evaluation was done with using the Mayo elbow Performance Score (MEPS) with the range of joint motion. Results: The VAS score at the last follow up was significantly decreased from 3.4 to 1.9 compare to the preoperative score. The range of joint motion was improved by 25 (0-40) to 8.5 (0-20) in extension and 101.7 (80-140) to 125.2 (85-140) in flexion (p<0.05). The MEPS always showed significant improvement by showing an increase from 65.4 (40-85) to 87.9 (55-100). However, 3 cases showed a decreased range of motion after the operation. One case showed ulnar nerve symptoms after surgery. Conclusion: An arthroscopic procedure can treat the pathologic processes associated with arthritis of the elbow and it was safe and effective in this series.

Case Study on Functional Bike Design for Elderly and Disabled (고령자.장애인을 위한 기능성 자전거디자인 사례연구)

  • Hong, Jung-Pyo;Hyoung, Sung-Eun;Jin, Hye-Ryeon;Seo, Seung-Hyun;Lee, Se-Hee;Yu, Mi;Kwon, Tae-Kyu
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • Health care service's added value and sustainability has been formed, through the product developing about sports equipment and special equipment for disabled in order to improve the life quality, with the increasing population of elderly and the attention about health care. This research's design and 3 testing sections has been done according to design process for design development of functional bike. 1st test is done through researching from 4 aspects: structure, aesthetic, function and using. In the 2nd testing, 10 universal design items were used to evaluate 10 modeling samples, and sample F which has high evaluation overall was chosen. In 3rd test, evaluation was done from the user service scene about the mock-up with 1/4 scale size. PPP (product performance program) which is constructed with 60 evaluation items about functional bike's service was tested, and these items were fixed through discussing with experts. Through the result we knew the aesthetic elements had relationship with proportion, unity and typicality. In 10 items (55 survey items), the scores of items with physical exposure's minimization, simple and intuitively usage showed high, on the contrary, the other items' scores was very low, such as information delivery's consideration and thought, failure preventing. The evaluation will be done once more by health care experts, designers and elderly together if the physical model could be made for getting accurate measurement about above test result in the future.

  • PDF

Gyroscope Signal Denoising of Ship's Autopilot using Kalman Filter and Multi-Layer Perceptron (칼만필터와 다층퍼셉트론을 이용한 선박 오토파일럿의 자이로스코프 신호 잡음제거)

  • Kim, Min-Kyu;Kim, Jong-Hwa;Yang, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.809-818
    • /
    • 2019
  • Since January 1, 2020, the International Maritime Organization (IMO) has put in place strong regulations to reduce air pollution caused by ships by lowing the upper limit of ship fuel oil sulfur content from 3.5% to 0.5% for ships passing through all sea areas around the world. Although it is important to reduce air pollutants by using fuel oil with low sulfur content, reducing the amount of energy waste through the economic operation of a ship can also help reduce air pollutants. Ships can follow designated routes accurately even under the influence of noise using autopilot systems. However, regardless of their quality, the performance of these systems is af ected by noise; heading angles with added measurement noise from the gyroscope are input into the autopilot system and degrade its performance. A technique to solve these problems reduces noise effects through the application of a Kalman filter, which is widely used in condition estimation. This method, however, cannot completely eliminate the effects of noise. Therefore, to further improve noise removal performances, in this study we propose a better denoising method than the Kalman filter technique by applying a multi-layer perceptron (MLP) in forward direction motion and a Kalman Filter in rotation motion. Simulations show that the proposed method improves forward direction motion by preventing the malfunction of a rudder more so than merely using a Kalman Filter.

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Tongue and lip strength in children with and without speech sound disorders (말소리장애 아동과 일반 아동 간 입술 및 혀 근력 비교 연구)

  • Jicheol Bang;Ji-Wan Ha;Seong-Tak Woo;Hyunjoo Choi;Sungdae Na;Sung-Bom Pyun
    • Phonetics and Speech Sciences
    • /
    • v.16 no.3
    • /
    • pp.59-69
    • /
    • 2024
  • Among the subgroups of speech sound disorder (SSD), the motor speech disorder (MSD) group is characterized by weak articulatory force. This study quantitatively measured and compared articulatory muscle strength between SSD and typically developing (TD) children. The Iowa Oral Performance Instrument (IOPI) was used to measure lip and tongue strength in 15 children with SSD and 15 TD children. We additionally measured peak lip and tongue pressure and endurance, and analyzed the correlation between each strength measure and the percentage of consonants correct (PCC). The findings were as follows: First, lip strength for the bilabial sounds did not differ between the two groups in the initial position but was significantly weaker in the SSD group in the final position. Tongue strength for alveolar sounds was weaker in the SSD group than in the TD group for the initial and final positions. Second, for lip and tongue strength, the difference in voicing features was significant in the TD group but not in the SSD group. Third, the peak pressure and endurance of the lips and tongue were significantly lower in the SSD group than in the TD group. Fourth, significantly higher static correlations were observed between most strength measures and the PCC. These findings suggest that weakness in articulatory motor execution may be an unrecognized underlying problem of SSD with unknown origin.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.