• Title/Summary/Keyword: 용융클링커

Search Result 10, Processing Time 0.022 seconds

Mineral Composition and Color Properties of Molten Clinker made from Blast Furnace Slag (고로(高爐)슬래그로 부터 제조(製造)된 용융(溶融)클링커의 광물조성(鑛物組成)과 색도특성(色度特性))

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.71-77
    • /
    • 2011
  • Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620 for molten clinker fabrication. Color and mineral composition of molten clinker was investigated by XRD and colorimeter. It was found that the molten clinker contains alite and belite equivalent to OPC clinker mineral and shows higher whiteness value than that of OPC. Whiteness of the molten clinker decreased with LSF and SM. Also the whiteness value of the slag cement using molten clinker was higher than that of common slag cement.

Study on the Synthesis of Tricalcium Aluminate Clinker from Waste Shell and Spent Oil-Refining Catalyst (폐 패각과 정유 폐촉매를 사용한 Tricalcium Aluminate 클링커의 합성에 관한 연구)

  • Lee, Keon-Ho;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.933-938
    • /
    • 2004
  • The clinkerbility and the behaviour of formation of $3CaO{\cdot}Al_{2}O_3$ were studied using the mixture of waste oyster shell and spent oil-refining catalyst mainly by the mineral and microstructural observation. By virtue of the formation of $12CaO{\cdot}7Al_{2}O_3$ at relatively low temperature and its successive reaction with CaO, the $3CaO{\cdot}Al_{2}O_3$ clinkers were formed easily without affection of minor constituents contained in oyster shell. Thus clinkers were formed at $1400^{\circ}C$ directly but began to melt incongruently at higher temperature above that. Aluminium hydroxide, however, was not desirable as an aluminous raw materials of the clinker because rapid melting occurs before $3CaO{\cdot}Al_{2}O_3$ forms main clinker mineral.

Property of Cement Clinker Using Furnace Slag (고로슬래그를 사용한 시멘트 클링커의 물성)

  • Jung, Yon-Jo;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun;Lee, Jung-Hui;Kwon, Choon-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.347-348
    • /
    • 2009
  • This study is epoch-making for CO$_2$ reduction. Lay out for this, I used the malting furnace slag which produced in the steel palnt It confirmed the physical properties of the paste that it mixes the gypsum and the clinker.

  • PDF

Synthesis of Cement Raw Materials by Melting of Industrial Wastes (폐기물의 용융처리에 의한 시멘트원료의 합성)

  • Hwang, Yeon;Sohn, Yong-Un;Chung, Hun-Saeng;Lee, Hong-Ki;Park, Hyun-Suh
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 1996
  • CZS(2Ca0 , SiO\ulcorner) phase of cement clinkcr was obtaincd by melting mixcd four indnstrial wasles of limestone sludge, waste Foundry sand, coal lly ash fiorn power plants and chernicas glasses. The effect ot mixing ratio of four rvastc mater~als ou the composnlg phascs in melled slag was investigated. Thc mixed wastes were meltcd to slag by heat under a constant basicity at 1370C. The shg consisted of p -CIS and C,AS(2CaO - A I P , . SiO,). The ratio of two phases was varied with mixing ~atioo f the waste materials. In order Lo increasc the amount ot j -C2S phase, the coal fly ash content should be reduced, while amount of the chemical glass be increased. The coal fly ash contcnt was the most imporlant factor in controlling phases of thc melted-slag.

  • PDF

Mineral Properties of Molten Clinker with Blast Furnace Slag (고로 슬래그를 사용한 용융클링커의 광물학적 특성)

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.589-594
    • /
    • 2011
  • Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620$^{\circ}C$ for molten clinker fabrication. It was found that molten clinker contained alite and belite equivalent to OPC clinker mineral by optical microscope and SEM. The size of alite was 10~50 ${\mu}m$ and that of belite was 20~80 ${\mu}m$. This result thought to be attributed low $Al_2O_3$ content and cooling condition. Interstitial phase increased with blast furnace slag content and gehlenite was formed by the condition of LSF and SM. So raw mix with 27~41% blast furnace slag could be converted into cement clinker by appropriate choice of melting andcooling methods in this study.

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Characteristics of Manufacturing for Special Cement Using High Chlorine by-product (고염소 부산물을 이용한 특수시멘트 제조 특성)

  • Moon, Kiyeon;Cho, Jinsang;Choi, Moonkwan;Cho, Kyehong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • This study aims to investigate the manufacturing process of calcium chloride-based special cement, i.e., CCA (calcium chloro aluminate, C11A7·CaCl2), which uses limestone, by using one type of random industrial by-product, domestic coal ash, cement kiln dust. The manufacturing process of was examined in detail, and the results suggested that the amount of CCA synthesized increased with an increase in the firing temperature. The manufacturing process of CCA was investigated at 1200℃, which was determined as the optimum firing temperature. The results showed that in general, the amount of CCA synthesized tended to increase with an increase in the firing time; however, the clinker melted when the firing time was more than 30 min, thereby suggesting that a firing time of less than 20 min would be suitable for the clinkering process. The optimal firing conditions for manufacturing CCA were obtained as follows: heating rate of 10 ℃/min, firing temperature of 1200 ℃, and holding time of 20 min. The results also suggest that manufacturing CCA will be easier when high chlorine-containing cement kiln dust is used.

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).