DOI QR코드

DOI QR Code

Characteristics of Manufacturing for Special Cement Using High Chlorine by-product

고염소 부산물을 이용한 특수시멘트 제조 특성

  • Moon, Kiyeon (Korea Institute of Limestone and Advanced Materials) ;
  • Cho, Jinsang (Korea Institute of Limestone and Advanced Materials) ;
  • Choi, Moonkwan (Korea Institute of Limestone and Advanced Materials) ;
  • Cho, Kyehong (Korea Institute of Limestone and Advanced Materials)
  • 문기연 (한국석회석신소재연구소) ;
  • 조진상 (한국석회석신소재연구소) ;
  • 최문관 (한국석회석신소재연구소) ;
  • 조계홍 (한국석회석신소재연구소)
  • Received : 2021.12.06
  • Accepted : 2021.12.22
  • Published : 2021.12.31

Abstract

This study aims to investigate the manufacturing process of calcium chloride-based special cement, i.e., CCA (calcium chloro aluminate, C11A7·CaCl2), which uses limestone, by using one type of random industrial by-product, domestic coal ash, cement kiln dust. The manufacturing process of was examined in detail, and the results suggested that the amount of CCA synthesized increased with an increase in the firing temperature. The manufacturing process of CCA was investigated at 1200℃, which was determined as the optimum firing temperature. The results showed that in general, the amount of CCA synthesized tended to increase with an increase in the firing time; however, the clinker melted when the firing time was more than 30 min, thereby suggesting that a firing time of less than 20 min would be suitable for the clinkering process. The optimal firing conditions for manufacturing CCA were obtained as follows: heating rate of 10 ℃/min, firing temperature of 1200 ℃, and holding time of 20 min. The results also suggest that manufacturing CCA will be easier when high chlorine-containing cement kiln dust is used.

본 연구에서는 석회석, 임의의 산업부산물, 국내산 석탄재 및 시멘트 킬른더스트를 활용해 원료배합특성 및 소성조건에 따른 CCA 특수시멘트 제조특성을 조사하였다. 소성조건에 따른 CCA 특수시멘트 제조특성결과, 소성온도 1200℃에서 CCA 광물상(C12A7·CaCl2) 합성량이 최대치를 나타내는 것을 확인할 수 있었다. 소성온도 1300℃에서는 CCA 광물상 합성량이 감소하는 것을 알 수 있었는데, 이는 염소성분 휘발에 의한 현상으로 보여지며, CCA 광물상 합성에 기여했던 CaO-Al2O3 화합물은 SO3와 결합하여 yeelimite가 형성된 것으로 판단된다. 소성유지시간에 따른 CCA 특수시멘트 제조특성 결과, 대체로 소성시간이 길어짐에 따라 CCA 합성량이 증가하는 경향을 나타내었으나 소성시간 30 min 이상에서는 클링커의 용융현상이 확인되며, 클링커링 공정을 위해서는 소성시간 20 min 이내가 적당한 것으로 사료된다. 이로 미루어볼 때 CCA 특수시멘트 제조를 위한 최적 소성조건은 승온속도 10℃/mim, 소성온도 1200℃, 유지시간 20 min으로 판단되며, 고염소 함유 시멘트 킬른 더스트를 활용한 CCA 특수시멘트 제조가 용이한 것을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임 ('20010616')

References

  1. CEMBUREAU., 2020 : Cement the European Green Deal - Reaching Climate Neutrality along the Cement and Concrete Value Chain by 2050, CEMBUREAU, pp.1-8.
  2. Chatziaras, N., Psomopoulos, C., Themelis, N., 2014 : Use of alternative fuels in cement industry, 12th International Conference on Protection and Restoration of the Environment, Skiathos island, Greece, 1, pp.521-529,
  3. Waste Plastic Recycling And Market Activation Report, 2017 : Korea Environmental Industry & Techonology Instiute, pp.2093-2332.
  4. Korean Social Trends, 2018 : Generation and Recycling of Waste Plastics, pp.263-269.
  5. Eitimes, Sim, Y. B. http://eitimes.kr/View.aspx?No=1394589, November 30, 2021.
  6. Saint-Jean, S.J., Jons, E., Lundgaard, N., et al., 2005 : Chlorellestadite in the preheater system of cement kilns as an indicator of HCl formation, Cement and Concrete Research, 35(3), pp.431-437. https://doi.org/10.1016/j.cemconres.2004.05.028
  7. N.K.Ueno. H. Harada, and K.B. Sutou, 1999 : Chlorine Bypass System for Stable Kiln Operation and the Recycling of Waste, International Cement Review, pp.36-41.
  8. S. Yokoyama, T. Nakano, Y. Tsuchida, et al. 1999 : Influence of Chlorine on Clinker Formation from Incinerated Ash of Urban Composite Waste, Cement Science and Concrete Technology, 53, pp.140-45.
  9. Min, T.B., Choi, H.K., Kim, H.C., et al. 2019 : Use of alternative fuels in cement manufacturing, Journal of the Korean Recycled Construction Resources Institute, 14(1), pp.14-21.
  10. Han, J.M., Kang, B.H., Park, J.Y., et al. 2020 : The Foundation Performance of Selected Waste Plastic Wastes Used in Cement Manufacturing, J. of Korean Inst. of Resources Recycling, 29(6), pp.88-97. https://doi.org/10.7844/kirr.2020.29.6.88
  11. Rahman, A., Rasul, M.G., Khan, M.M.K., et al. 2013 : Impact of alternative fuels on the cement manufacturing plant performance: an overview, Procedia Engineering, 56, pp. 93-400.
  12. Lee, C. S., Yoon, I. S, 2003 : Prediction of determination process for concrete considering combined deterioration of carboncation chloride ion, JKCL, 15(3), pp.902-912.
  13. Lee, Y. S., Lee, H. S., 2016 : An experimental study on calibration for detecting chloride in cement paste rising ion-selective electrod, Korea Concrete Institute, 28(2), pp. 513-514.
  14. Kim, W. S., Shin, Y. S., 2014. KR. 10-2013-0021831.
  15. Choi, J. H., Oh, S. S., 2019 : Removal of Chlorine from Municipal Solid Waste Fly Ash by using Acid and Alkaline Solution, JKSWM, 36(5), pp.471-479.
  16. Mokra, J., Kulisek, K., Gazdip, D., et al., 2016 : Long-term observation of yeelimite clinker hydration in environment of saturated water vapour, Procedia Engineering, 151, pp. 94-99. https://doi.org/10.1016/j.proeng.2016.07.385
  17. Skalamprinos, S., Galan, I., Hanein, T., et al., 2018 : Enthalpy of formation of ye'elimite and ternesite, J Therm Anal Calorim, 131, pp.2345-2359. https://doi.org/10.1007/s10973-017-6751-0
  18. Inam Jawed, Jan Skalny., 1977 : Alkalies in cement: A review I. Forms of Alkalies and their effect on clinker formation, Cement and Concrete Research, 7(6), pp.719-729. https://doi.org/10.1016/0008-8846(77)90056-4
  19. Urs Haeseli., 2011 : Reactions of alkalis, chlorine and sulfur during clinker production, Cement International, 9(3), pp.38-53.
  20. Lee, J. H., Kim, D, K., 1996 : A Study on the Effects of Reclaiming - Fuel in Cement Kiln, KICT, pp.63-76.
  21. Lee, Y.J., Kim, N.I., Cho, J.H., et al., 2021 : A Study on the Characteristics of Clinker and Cement as Chlorine Content, J. of Korean Inst. of Resources Recycling, 30(5), pp.10-16. https://doi.org/10.7844/kirr.2021.30.5.10