• Title/Summary/Keyword: 완전혼합반응로

Search Result 92, Processing Time 0.022 seconds

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor (혐기성 유동상 반응기의 수리학적 특성)

  • Seok, Jong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.

Diagnosis of Submerged Fixed Bioreactor using Radioisotope Tracer (방사성동위원소 추적자를 이용한 침적형 고정 미생물 반응조 진단)

  • Jung, Sunghee;Jin, Joonha;Lee, Myunjoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1149-1158
    • /
    • 2000
  • A radioisotope tracer experiment was carried out in the submerged fixed bioreactor of a dye wastewater treatment facility to evaluate the flow behaviors in the 6 compartments of the reactor and to find any possible factors which may affect to the efficiency of the process. Approximately 20mCi of $^{131}I$ was injected into the system as a tracer and 8 radiation detectors were placed in the 6 compartments and at the inlet and the outlet of the system to measure the change of the tracer concentration with time. Using the Perfect Mixers in Series Model the measured data were analyzed to calculate the mean residence time and the characteristic parameters of the flow in the system. The mean residence time of the system was calculated as 17 hours which is 76% of the designed MRT(22.3hr). Among the 6 compartments, the first compartment doesn't show the characteristic of perfect mixer, whereas, the other 5 compartments are working as perfect mixers. The output response of the first compartment is fit well with the simulated output of a model which consists of a perfect mixer with an exchange volume. It indicates that a quarter of the tank volume is working as a dead volume or an exchange volume. From the measured residence time distributions in each compartment, the appropriate sampling times after the change of operational condition of the electron beam accelerator were evaluated.

  • PDF

An Investigative Study on the Characterization of Cefaclor Decomposition in UV/H$_2$O$_2$ Process (UV/H$_2$O$_2$공정에 의한 Cefaclor 분해 특성에 관한 기초연구)

  • Cho, Chun-Ki;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1039-1046
    • /
    • 2008
  • The combining process of UV irradiation and H$_2$O$_2$ was used to investigate characteristics of cefaclor decomposition in the aquatic environment. The separate mixing tank was used to minimize the decreasing effective of contact area caused by sampling. Four baffles were installed inside the UV reactor for the complete mixing of the sample and outside of the reactor was wrapped with aluminum foil to protect the emission of photon energy. Production of OH radical was measured using pCBA(p-Chlorobenzoic acid) indirectly and rate constants were withdrawn pseudo-frist order reaction. Optimum condition for the maximum production of OH radical was found to be pH 3, hydrogen peroxide of 5 mmol/L and recirculation rate of 400 mL/min. Pseudo-frist order reaction rate constant was 0.1051 min$^{-1}$. In the optimum condition, cefaclor was completely decomposed within 40 min and rate constant was 0.093 min$^{-1}$. Decomposition by OH radical producted intermediate anions such as chloride, nitrate, sulfite and acetic acid and phenylglycine. After 6 hr most cefaclor was decomposed by UV/H$_2$O$_2$ process and converted to CO$_2$ and H$_2$O, resulting of operation in the decrease of TOC and acetic acid and the disappearance of phenylglycine.

Manufacture Technology of Monoammonium phosphate from LCD Waste Acid (LCD 제조공정의 혼합폐산으로부터 일인산암모늄 제조 기술)

  • Lee, Ha-Young;Lee, Sang-Gil;Park, Sung-Kook;Kim, Ju-Han;Kim, Ju-Yup;Kim, Jun-Young
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.253-257
    • /
    • 2009
  • The waste solution discharged form the LCD(Liquid Crystal Display) manufacturing process contains phosphoric acid, nitric acid, acetic acid and metal ions such Al and other impurities. In this study, vacuum evaporation and diffusion dialysis was developed to commercialize an efficient system for recovering the high-purity phosphoric acid and manufacturing monoammonium phosphate. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. Also, by diffusion dialysis, about 97.5% of Al was removed. Monoammonium phosphate was manufactured from purified phosphoric acid and ammonium hydroxide. In order to get the optimum manufacturing condition, the molar ratio of ammonium hydroxide and phosphoric acid, pH and temperature was controlled. Using this optimum condition, we obtained the recovery rate of monoammonium phosphate of about 90%.

A Study of the Simultaneous Nitrification and Denitrification in a Single Bioreactor (단일 반응기를 이용한 동시 질산.탈질에 관한 연구)

  • Park, Jong-Il;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.220-228
    • /
    • 2007
  • In this study, effective simultaneous nitrification and denitrification reaction was accomplished in a completely mixed single bioreactor. As the important factors on the reaction, optimal DO concentration and effective range of influent C/N ratio was investigated with the synthetic wastewater. Experimental results show that stable nitrogen removals were accomplished with 0.5 mg/L DO concentration and over 7 C/N ratio. Nitrogen removal efficiency of the real municipal wastewater was low with 0.5 mg/L DO concentration because of its low C/N ratio. The increment of the C/N ratio at the inflow of the municipal wastewater with addition of external carbon source (glucose) over 7(up to 14) shows over 70% nitrogen removal in the single bioreactor.

The effects of turbulence models on the numerical analysis of CSTR (난류모델이 완전혼합반응조 수치해석에 미치는 영향 연구)

  • Im, Yeong-Taek;Park, No-Seok;Kim, Seong-Su;Lee, Beom-Hui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.375-382
    • /
    • 2011
  • The usages of CFD (Computational Fluid Dynamics) which is simulating turbulent flows in CSTRs (Complete Stirrer Tank Reactors) have been reported. Considering model strategies and simulation techniques, this paper is focused on the turbulence models. The results of this study would suggest multiple reference frameworks relevant to rotational flow simulation. Specifically, the analysis of turbulence dissipation rates referred to this study would solve the relevant environmental engineering problem and would be beneficial to the CFD in CSTRs using mechanical mixer.

Retention Mechanism of Caffeine and Tryptophan in Macroporous Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] Rods (매크로 다공성 Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] 막대에서 Caffeine과 Tryptophan의 체류 메카니즘)

  • Jin, Longmei;Yan, Hongyuan;Zheng, Jinzhu;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.401-404
    • /
    • 2006
  • Macroporous Poly(Methacrylic acid-co-Ethylene Glycol Dimethacrylate) Rods were in situ thermal initialized within a empty column($3.9{\times}150mm$) by free radical polymerization. The polymerization mixture was consisted of monomer, cross-linking monomer, porogenic solvent, initiator and control the ratio of these materials, column efficiency could be developed. Caffeine and tryptophan as separation substances and the retention mechanism of this kind of monolithic column was mainly hydrogen bond function.

Degradation of Phenolic Compounds in a Slurry Reactor (슬러리 반응기를 이용한 페놀류 화합물의 분해거동)

  • Lee, Jamyoung;Jung, Yonkyu;Lee, Taejin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.949-957
    • /
    • 2000
  • This study investigates the remediation of the phenol or PNP(p-Nitrophenol) contaminated soils in a slurry reactor by a pure culture, P-99. The application of a pure culture for the phenol decontamination make the degradation rate three times faster than that of the mixed activated sludge. The destruction of 300 mg/L phenol was completed in 26 hours. As 1 mg of phenol was added, 0.1457 mg of microorganism was grown in the medium. The pure culture could not utilizes PNP, one of the xenobiotics, as a growth substrate. When the bacteria was induced by phenol enrichment medium. PNP could be effectively transformed with cometabolic process. The induction of the bacteria requires 1 mg of phenol for the destruction of 0.027 mg PNP. When PNP concentration in the medium contained phenol and PNP increased. the degradation rate of phenol was decreased. The degradation rate of phenol and PNP in the slurry reactor was about two times faster than in the reactor without slurry because of higher dissolved oxygen supply in the aqueous phase and adsorption on the surface of the soil.

  • PDF

The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene (페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응)

  • Lim, Ki-Chul;Kim, Eul-San;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 1991
  • Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in $MgCr_xFe_{2-x}O_4$, which resulted in the increase of selectivity to styrene and the suppression of total oxidation.

  • PDF

RTD Analysis using Radioisotope Tracer on the Water Flow Characteristics in a Flocculator of Wastewater Treatment Facility (방사성동위원소 추적자를 이용한 폐수처리시설의 응집조에서 유입수의 체류시간분포 분석)

  • Kim, Jin-Seop;Jung, Sung-Hee;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Using In-113m emitting gamma ray of 0.392MeV at radioisotope tracer the RTD (residence time distribution) of water in the flocculator of wastewater treatment facility was measured. The result was analyzed mathematically using K-RTD program constructed on the basis of CFSTR (constant flow stirred tank reactor) model. The mean residence time and the tank number are the main parameters which describe the flow behavior of the system. Those parameters were obtained in the fitting profess of the simulated curves to the experimental results. It was suggested to construct a modified numerical model to describe the bypass flow which was observed in the experiment.