RTD Analysis using Radioisotope Tracer on the Water Flow Characteristics in a Flocculator of Wastewater Treatment Facility

방사성동위원소 추적자를 이용한 폐수처리시설의 응집조에서 유입수의 체류시간분포 분석

  • Kim, Jin-Seop (Radioisotope Research & Development Lab., Korea Atomic Energy Research Institute) ;
  • Jung, Sung-Hee (Radioisotope Research & Development Lab., Korea Atomic Energy Research Institute) ;
  • Kim, Jong-Bum (Radioisotope Research & Development Lab., Korea Atomic Energy Research Institute)
  • 김진섭 (한국원자력연구소 동위원소연구개발랩) ;
  • 정성희 (한국원자력연구소 동위원소연구개발랩) ;
  • 김종범 (한국원자력연구소 동위원소연구개발랩)
  • Published : 2006.02.28

Abstract

Using In-113m emitting gamma ray of 0.392MeV at radioisotope tracer the RTD (residence time distribution) of water in the flocculator of wastewater treatment facility was measured. The result was analyzed mathematically using K-RTD program constructed on the basis of CFSTR (constant flow stirred tank reactor) model. The mean residence time and the tank number are the main parameters which describe the flow behavior of the system. Those parameters were obtained in the fitting profess of the simulated curves to the experimental results. It was suggested to construct a modified numerical model to describe the bypass flow which was observed in the experiment.

폐수처리시설의 응집조를 대상으로 0.392MeV의 감마선을 방출하는 In-113m을 추적자로 이용하여 체류시간분포(RTD; residence time distribution)를 측정하였다. 계측 결과는 CFSTR (constant flow stirred tank reactor) 모델을 바탕으로 구축한 K-RTD 프로그램을 이용하여 수학적으로 분석하였으며, 이를 바탕으로 혼합 특성을 규명하고자 하였다 모델에 의한 시뮬레이션 결과를 계측결과와 맞추는 과정에서 유체 거동의 특성을 표현하는 인자들을 계산하였으며, 이들 인자에 의한 시뮬레이션 결과는 실험결과에 매우 성공적으로 부합하였다. 또한 향후 본 실험에서 관찰된 bypass flow의 성분을 이론적 모델에 포함시키고 이를 분석하며 혼합조의 효율에 영향을 미치는 요소들에 대한 추가 연구의 필요성을 확인하였다.

Keywords

References

  1. Guo-Hua Hu, 'Modeling and on-line measurement of overall and local residence time distribution in extruder reactors,' Proceedings of the First International Congress on Tracers and Tracing Methods, CNRS-ENSIC, Nancy, pp. 153-160, (2001)
  2. J. S. Charlton, 'Radioisotope Techniques for Problem Solving in Industrial Process Plant,' Leonard Hill, London, pp. 84-96, (1986)
  3. P.V. Danckwerts, 'Continuous flow systems distribution of residence times,' Chem. Eng. Sci. Vol.2, No.1, pp. 1-18, (1953) https://doi.org/10.1016/0009-2509(53)80001-1
  4. H. Weinstein and R.J. Adler, 'Micromixing effects in continuous chemical reactors,' Chem. Eng. Sci., Vol.22, pp. 65-75, (1967) https://doi.org/10.1016/0009-2509(67)80105-2
  5. IAEA, 'Guidebook on Radioisotope Tracers in Industry,' Technical report No. 316, pp. 39-68, IAEA, Vienna, (1990)
  6. Octave Levenspiel, B.W. Lai and C.Y. Chatlynne, 'Tracer curves and the residence time distribution,' Chem. Eng. Sci., Vol. 25, pp. 1611-1613, (1970) https://doi.org/10.1016/0009-2509(70)85084-9
  7. Z. Stegowski, 'Accuracy of the residence time distribution function parameters,' Nucl. Geophys. Vol.7, No.2, pp. 335-341, (1993)
  8. Octave Levenspiel and J.C.R. Turner, 'The interpretation of residence-time experiments,' Chem. Eng. Sci., Vol. 25, pp. 1605-1609, (1970) https://doi.org/10.1016/0009-2509(70)85083-7
  9. IAEA, 'Guidebook on Radioisotope Tracers in Industry', Technical report No. 316, pp. 102-103, IAEA, Vienna, (1990)
  10. C. G. Clayton, Spackman, R. and Ball, A. M., 'The accuracy and precision of liquid flow measurement by radioactive isotopes,' Proceedings of the Symposium on Radioisotope Tracers in Industry and Geophysics, Prague in 1966, IAEA, Vienna pp. 563, (1967)
  11. J. Thyn and R. Zitny, 'Problems of residence time distribution analysis with applications of radiotracers,' Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol.205, No.2, pp. 225-233, (1996) https://doi.org/10.1007/BF02039407
  12. 한국원자력연구소, 체류시간분포 분석 프로그램; K-RTD, (1999)
  13. A. D. Martin, 'Interpretation of residence time distribution data, ' Chem. Eng. Sci., Vol. 55, pp. 5907-5917, (2000) https://doi.org/10.1016/S0009-2509(00)00108-1