• Title/Summary/Keyword: 온도장 측정

Search Result 460, Processing Time 0.038 seconds

Implementation of temperature measurement system using Arduino and Android OS (아두이노와 안드로이드 OS를 이용한 온도측정 시스템 구현)

  • Kim, Sung Jin;Jeon, Seong;Choi, Jin Myung;Park, Jong Chan;Oh, Gi Hwan;Kim, Da Eun;Kim, Eun Seo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.281-284
    • /
    • 2022
  • 코로나로 인해 대한민국의 모든 산업은 위축되었고, 모두가 힘든 시기를 보내고 있지만 그 중 캠핑산업은 예외이다. 코로나와 상관없이 야외에서 즐길 수 있는 캠핑장을 찾는 사람들은 꾸준히 늘어나고 있다. 이러한 캠핑에 있어서 가장 중요한 요소는 먹거리이다. 그 중 가장 대표적이고 잘 알려진 먹거리는 고기 요리이다. 본 논문은 캠핑족들의 편의를 제공해주기 위해 블루투스 통신을 통해 적정 고기 온도를 알려주는 서비스를 제공한다. 아두이노와 블루투스 서미스터 센서를 연결하여 안드로이드 스튜디오를 활용하여 애플리케이션을 개발하고, 블루투스로 통신을 통해 외부 장치 데이터 통신 구현을 통하여 실시간 온도 데이터를 확인할 수 있다. 또한 Firebase를 활용하여 레시피북을 제작해 접하지 못했던 육류 위주의 레시피를 제공하는 서비스도 제공한다.

  • PDF

Construction of Low Magnetic Standard System using a Multi-layer Solenoid with Single-current (단전류-다층 솔레노이드 방법을 사용한 저자장 표준시스템 제작)

  • 박포규;김영균
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • The magnetic field standard below 1 mT with the resolution of 0.26 nT has been established. Earth magnetic field (EMF) is compensated automatically down to 0.1 nT/10 min. by a closed feedback system with Cs optical pumping magnetometer and 3-axis Helmholtz coils in nonmagnetic facilities. A multi-layer precision solenoid with the optimized single-current method generates the uniform magnetic field better than 1.0×10\^-7/ within ± 1 cm region at its center. The coil constant of solenoid determined from Helium optical pumping magnetometer is 1.231 058 9 mT/A, and temperature coefficient is 0.38 nT/\^C. This standard system is used for calibration of low field magnetometers and testing relates to low field.

  • PDF

KSR-III 과학탑재 시스템 개발

  • Hwang, Seung-Hyun;Kim, Jhoon;Chun, Young-Doo;Kim, Yong-Ha;Jang, Min-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.83-90
    • /
    • 2002
  • This paper describes the development of scientific payload system onboard the KSR-III. The ozone detector(UVR), Langmuir electron probe(LEP), airglow photometer(AGP), and magnetometer(MAG) constitute this system. The purpose of the ozone detector is to measure the ozone density profile and the LEP measures the electron density and temperature in the ionosphere over the Korean Peninsula. The AGP detects airglow in the mesosphere over the Korean Peninsular. The MAG provides rocket attitude and the magnetic fluctuation information during the flight. With the developed payloads, the ground calibration tests and the environmental tests have been performed.

  • PDF

Effect by Temperature Distribution of Target Surface during Sputtering by Bipolar Pulsed Dc and Continuous Dc (직류와 양극성 펄스직류에 의한 스퍼터링시 타겟 표면의 온도 분포와 그 영향)

  • Yang, Won-Kyun;Joo, Jung-Hoon;Kim, Young-Woo;Lee, Bong-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • We measured the temperature of target surface inducing by various physical phenomenon on magnetron sputtering target and confirmed the possibilities if the temperature distribution could affect plasma and deposited thin film. The target of magnetron sputtering has two types: round type and rectangular type. In a rectangular target, the concentrated discharge area by corner effect by magnetic field and non-uniform erosion of target are generated. And we found the generation of non-uniform temperature distribution on the target surface from this. This area was 1020C higher than non-sputtering area. And if particles are generated during sputtering process, they were 20C higher than the area where is higher than non-sputtering area. These effects result in non-uniformity of thin films, crack of ceramic target, and shortening target life by non-uniform erosion.

Study on the Temperature Separation Phenomenon in a Vortex Chamber (와류실의 온도 분리 현상에 대한 연구)

  • Ye, A Ran;Zhang, Guang;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.731-737
    • /
    • 2014
  • A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

Concentration of Sodium Chloride Solutions Sensing by Using a Near-Field Microwave Microprobe (비접촉 근접장 마이크로파 현미경을 이용한 NaCl 용액의 농도 측정)

  • Kim, Song-Hui;Yoon, Young-Woon;Babajanyan, Arsen;Kim, Jong-Chul;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • We observed the NaCl concentration of solutions using a near-field microwave microprobe(NFMM). Instead of the usual technique, we take advantage of the noncontact evaluation capabilities of a NFMM. A NFMM with a high Q dielectric resonator allows observation of small variations of the permittivity due to changes in the NaCl concentration. The changes of NaCl concentration due to a change of permittivity of the NaCl solution were investigated by measuring the microwave reflection coefficient S11 of the resonator. The NaCl sensor consisted of a dielectric resonator coupled to a probe tip at an operating frequency of about f=4 GHz. The change of the NaCl concentration is directly related to the change of the reflection coefficient due to a near field electromagnetic interaction between the probe tip and the NaCl solution. In order to determine the probe selectivity, we measured a mixture solution of NaCl and glucose.

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

An Experimental Study on Braking Thermal Damage of Brake Disk Cover (브레이크 디스크 커버의 제동 열손상에 대한 실험적 연구)

  • Ko, Kwang-Ho;Moon, Byung-Koo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.171-178
    • /
    • 2015
  • The disk cover is installed to protect brake disk and calliper and it's removed right before delivering to customers. The temperature of disk cover was measured driving test vehicles(2000cc, diesel) in this study. The highest temperature measured for the driving test(120km/h-braking(0.3G)-stop-120km/h-braking(0.5G)-stop) was 260270C in the upper part of the disk cover and the temperature varied considerably around the disk cover. It can be inferred from this temperature distribution around the cover that the major heat transfer from hot disk to cover was through convection. In other words, the hot air generated by braking friction moved up to the upper part of the disk cover. And only the upper area of the disk cover was melted down during this driving test. The thickness of disk cover was increased to 1.0mm from 0.7mm and 1 paper of masking tape was pasted in the upper region of the disk cover. Then the cover endured the heated air formed by braking friction during the driving test.

Poly(vinylidene fluoride) Piezoelectric Film Characteristics by Poling Conditions for Distributed Tactile Sensor (분포형 촉각센서를 위한 압전성 폴리(비닐리덴 플루오라이드) 필름의 극화 특성)

  • Lee Kyungsub;Kim Dongouk;Kim Hyungtae;Jung Kwangmok;Choi Hyoukryeol;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.361-366
    • /
    • 2004
  • The poling characteristics of PVDF (poly(vinylidene fluoride)) film was investigated by measuring the electric voltage generated by the external load for the distributed tactile sensor applications. The poling conditions for the PVDF films were controlled by changing temperature and electric field, and the resulting crystal structure of the β-phase crystal was confirmed by FT-IR, DSC, and XRD experiments. The β-phase crystal was increased with the poling temperature and poling voltage, and subsequently the permittivity of the Poled PVDF films was increased. Finally, the prototype tactile sensor was tested by a 8 × 8 may circuit exhibiting high voltage signal for the highly poled PVDF films.

Annealing Effect on Magneto-transport Properties of Amorphous Ge1-xMnx Semiconductor Thin Films (비정질 Ge1-xMnx 박막의 자기수송특성에 미치는 열처리 효과)

  • Kim, Dong-Hwi;Lee, Byeong-Cheol;Lan Anh, Tran Thi;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Yu, Sang-Soo;Baek, Kui-Jong;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2009
  • Amorphous Ge1_xMnx semiconductor thin films grown by low temperature vapor deposition were annealed at various temperatures from 400 to 700C for 3 minutes in high vaccum chamber. The electrical and magnetotransport properties of as-grown and annealed samples have been studied. X-ray diffraction patterns analysis revealed that the samples still maintain amorphous state after annealling at 500C for 3 minutes and they were crystallized when annealing temperature increase to 600C. Temperature dependence of resistivity measurement implied that as-grown and annealed Ge1_xMnx films have semiconductor characteristics, the increase of resistivity with annealling temperature was obseved. The 700C-annealed sample exhibited negative magnetoresistance (MR) at low temperatures and the MR ratio was 8.5% at 10 K. The asymmetry was present in all MR curves. The anomalous Hall Effect was also observed at 250 K.