DOI QR코드

DOI QR Code

Study on the Temperature Separation Phenomenon in a Vortex Chamber

와류실의 온도 분리 현상에 대한 연구

  • Ye, A Ran (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Zhang, Guang (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Heuy Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • Received : 2014.01.23
  • Accepted : 2014.07.21
  • Published : 2014.09.01

Abstract

A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

와류실은 압축된 공기를 이용하여 고온과 저온 가스로 분리할 수 있는 단순한 장치로, 차세대 새로운 열교환기로 각광받고 있으나, 와류실 내부에서 발행하는 물리적 유동특성에 대해 아직까지 많이 알려지지 않았다. 본 연구에서는 온도 분리 현상을 조사하기 위해 실험 및 수치해석을 수행하였다. 공급 압력에 따른 온도 변화를 측정하기 위하여 다수의 압력 및 온도 센서를 사용하였으며, CFD 기법을 적용하여 3차원 비정상 압축성 유동장을 조사하였다. 연구를 통해 온도 분리 현상은 점성일과 밀접한 관계가 있는 공급 압력과 와류실의 직경에 영향을 받았으며, 와류실에서 발생하는 온도분리 현상은 압력구배파의 개념으로 확증할 수 없었다.

Keywords

References

  1. Beliavsky, Y., 2012, "Experimental Investigation of a Temperature Separation Effect Inside a Short Vortex Chamber," 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta.
  2. Beliavsky, Y., 2013, "The Pressure Gradient Elastic Wave : Energy Transfer Process for Compressible Fluid with Pressure Gradient," Journal of Engineering and Automation, Vol. 3, pp. 53-64.
  3. Ranque, G. J., 1933, "Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot Air and Cold Air," Journal of Physics, Radium(Paris), Vol. 4, pp. 1125-1130.
  4. Hilsch, R., 1947, "The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process," Review of Scientific Instruments, Vol. 18, No. 2, pp. 108-113. https://doi.org/10.1063/1.1740893
  5. Frohlingsdorf, W. and Unger, H., 1999, "Numerical Investigations of the Compressible Flow and the Energy Separation in the Ranque-Hilsch Vortex Tube," International Journal of Heat and Mass Transfer, Vol. 42, pp. 415-422. https://doi.org/10.1016/S0017-9310(98)00191-4
  6. Behera, U., Paul, P. J., Dinesh, K. and Jacob, S., 2008, "Numerical Investigations on Flow Behaviour and Energy Separation in Ranque-Hilsch Vortex Tube," International Journal of Heat and Mass Transfer, Vol. 51, pp. 6077-6089. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.029
  7. Xue, Y., Arjomandi, M. and Kelso, R., 2010, "A Critical Review of Temperature Separation in a Vortex Tube," Experimental Thermal and Fluid Science, Vol. 34, pp. 1367-1374. https://doi.org/10.1016/j.expthermflusci.2010.06.010
  8. Gao, C. M., Bosschaart, K. J., Zeegers, J. C. H. and Waele, A., 2005, "Experimental Study on a Simple Ranque-Hilsch Vortex Tube," Cryogenics, Vol. 45, No. 3, pp. 173-183. https://doi.org/10.1016/j.cryogenics.2004.09.004