Concentration of Sodium Chloride Solutions Sensing by Using a Near-Field Microwave Microprobe

비접촉 근접장 마이크로파 현미경을 이용한 NaCl 용액의 농도 측정

  • Kim, Song-Hui (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Yoon, Young-Woon (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Babajanyan, Arsen (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Jong-Chul (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Kie-Jin (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • 김송희 (서강대학교 물리학과 바이오융합 연구단) ;
  • 윤영운 (서강대학교 물리학과 바이오융합 연구단) ;
  • ;
  • 김종철 (서강대학교 물리학과 바이오융합 연구단) ;
  • 이기진 (서강대학교 물리학과 바이오융합 연구단)
  • Published : 2007.02.28

Abstract

We observed the NaCl concentration of solutions using a near-field microwave microprobe(NFMM). Instead of the usual technique, we take advantage of the noncontact evaluation capabilities of a NFMM. A NFMM with a high Q dielectric resonator allows observation of small variations of the permittivity due to changes in the NaCl concentration. The changes of NaCl concentration due to a change of permittivity of the NaCl solution were investigated by measuring the microwave reflection coefficient $S_{11}$ of the resonator. The NaCl sensor consisted of a dielectric resonator coupled to a probe tip at an operating frequency of about f=4 GHz. The change of the NaCl concentration is directly related to the change of the reflection coefficient due to a near field electromagnetic interaction between the probe tip and the NaCl solution. In order to determine the probe selectivity, we measured a mixture solution of NaCl and glucose.

본 연구에서는 근접장 마이크로파 현미경을 이용하여 NaCl 용액의 농도검출센서로의 응용 가능성에 대해 알아보았다. 근접장 마이크로파 현미경은 높은 Q 인자를 갖는 유전체 공진기를 이용하여 고감도 특성을 갖는다. 측정과정에저 탐침이 액체 시료표면에 근접했을 때 발생할 수 있는 표면장력의 영향을 피하기 위해 튜닝폭 피드백시스템을 이용하여 탐침과 시료 사이의 거리를 $1{\mu}m$로 유지하였다. 측정은 4GHz에서 이루어졌으며 NaCl 용액의 농도 변화, 농도 및 온도 변화, 부피 변화에 따른 마이크로파 반사계수($S_{11}$)을 관측하여 농도를 측정하였다. 또한 선택적 반응 감도 특성을 알아보기 위하여 NaCl과 글루코스의 혼합용액에서 글루코스의 농도 및 NaCl 용액의 농도를 관측하였다.

Keywords

References

  1. I. Lampreia, S. Magalhaes, S. Rodrigues and A. Mendoncea, 'Solubility of proline - leucine dipeptide in water and in aqueous sodium chloride solutions from T = (288.15 to 313.15) K,' J. Chem. Thermodyn. Vol. 38, pp. 240-244, (2006) https://doi.org/10.1016/j.jct.2005.05.009
  2. L. Mayor, R. Moreira, F. Chenlo and A. M. Sereno, 'Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions,' J. Food Eng. Vol. 74, No.2, pp. 253-262, (2006) https://doi.org/10.1016/j.jfoodeng.2005.03.003
  3. K. Rahmouni, M. Keddam, A. Srhiri and H. Takenouti, 'Corrosion of copper in 3% NaCl solution polluted by sulphide ions,' Corros. Sci. Vol. 47, pp. 3249-3266, (2005) https://doi.org/10.1016/j.corsci.2005.06.017
  4. A. K. Lyashchenko and A. Yu. Zasetskv, 'Complex dielectric permittivity and relaxation parameters of concentrated aqueous electrolyte solutions in millimeter and centimeter wavelength ranges,' J. Mol. Liq. Vol. 77, pp. 61-75, (1998) https://doi.org/10.1016/S0167-7322(98)00068-3
  5. K. J. Bois, A. D. Benally and R. Zoughi, 'Near-field microwave non-invasive determination of NaG in mortar,' IEE. Proc.-Sci. Meas. Technol. Vol. 148, No.4, pp. 178-185, (2001)
  6. J. Park, S. Hyun, A. Kim, T. Kim and K. Char, 'Observation of biological samples using a scanning microwave microscope,' Ultramicroscopy, Vol. 102, pp. 101-106, (2005) https://doi.org/10.1016/j.ultramic.2004.09.007
  7. A. Babaianyan, J. Kim, S. Kim, B. Friedman and K. Lee, 'Glucose biosensing using a near-field microwave microprobe,' Key Engineering Materials Vols. 321-323, pp. 1048-1051, (2006)
  8. M. Abu Teir, M. Golosovsky, D. Davidov, A. Frenkel and H. Goldberg, 'Near-field scanning microwave probe based on a dielectric resonator,' Rev. Sci. Instrum. Vol. 72, No.4, pp. 2073-2079, (2001) https://doi.org/10.1063/1.1351837
  9. B. Friedman, M. Gaspar, S. Kalachikov, K. Lee, R. Levicky, Goo Shen and H. Yoo, 'Sensitive, label-free DNA diagnostics based on near-field microwave imaging,' J. Am. Chem. Soc. Vol. 127, No. 27, pp. 9666-9667, (2005) https://doi.org/10.1021/ja051760i
  10. S. Kim, H. You, K. Lee, B. Friedman, M. Gaspar and R. Levicky, 'Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork,' Appl. Phys. Lett. Vol. 86, pp. 153506-153508, (2005) https://doi.org/10.1063/1.1904713
  11. 김주영, 김송희, 유현준, 양종일, 유형근, 유경선, 김승완, 이기진 '비파괴 측정을 위한 근접장 마이크로파 현미경 연구', 비파괴검사학회지 Vol. 24, No. 5, pp. 508-517(2004)
  12. M. Tabib-Azar, J. L. Katz and S. R. LeClair, 'Evanescent microwaves: a novel super-resolution noncontact nondestructive imaging technique for biological applications,' IEEE Instrum. Measurement, Vol. 48, No.6, pp. 1111-1116, (1999) https://doi.org/10.1109/19.816123
  13. D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, B. J. Feenstra, F. C. Wellstood, and S. M. Analge, 'Quantitative imaging of sheet resistance with a scanning near-field microwave microscope,' Appl. Phys. Lett. Vol. 72, No.7, pp. 861-863, (1998) https://doi.org/10.1063/1.120918
  14. Khaled Karrai and Robert D. Grober, 'Piezoelectric tip-sample distance control for near field optical microscopes,' Appl. Phys. Lett. Vol. 66, No. 14, pp. 1842-1844, (1995) https://doi.org/10.1063/1.113340
  15. D. M. Pozar, Microwave Engineering (Anderson-Wesley, New York, 1990)
  16. W. M. Arnold, 'Positioning and levitation media for the separation of biological cells,' IEEE Trans. Ind. Appl. Vol. 37, No.5, pp. 1468-1475, (2001) https://doi.org/10.1109/28.952523
  17. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, New York, 2004)
  18. J. H. Jiang and D.L. Wu, 'Ice and water permittivities for millimeter and submillimeter remote sensing applications,' Atmos. Sci. Let. Vol. 5, pp. 146-156, (2004) https://doi.org/10.1002/asl.77