팩시밀리로부터 수신된 영상은 글자를 두껍게 하는 돌출잡영(salient noise), 문자주변에 점이 추가되는 고춧가루 잡영(pepper noise), 선의절단을 일으키는 백색잡영(white noise)으로 인하여 가독성이 떨어진다. 수신된 팩시밀리 영상을 원래의 영상으로 복원하기 위하여 최근에 Handley 와 Dougherty가 처음으로 형태학적 복원 방법을 제안하였다. 형태학적 복원 방법은 돌출잡영에 대해서 효과적이었지만, 확률적으로 발생하는 백색잡영과 고춧가루잡영에 대해서는 팩시밀리 영상을 결정적 수열(deterministic sequence)로다루었기 때문에 효과적이지 못했다. 본 논문에서는 주사과정, 고딩과정, 그리고 통신과정에서 생성되는 돌출, 고춧가루, 백색잡영에 의해 훼손된 팩시밀리 영상을 칼만여과를 이용하여 복원하는 새로운 방법을 제안하였다. 제안된 방법은 모델링과 복원 두 단계로 구축된다. 첫째, 이웃 화소들과의 종속관계를 갖는 팩시밀리 영상을 마르코프 랜덤 필드를 바탕으로 팩시밀리 시스템 모델을 제안하였다. 둘째, 제안된 팩시밀리 시스템 모델을 칼만 여과과정의 시스템 모델 및 관측모델로 재구성한 다음, 칼만 여과과정의 ill-conditioned 문제를 극복하기 위하여 양정치 (positive definite)공분산 행렬을 유도하여 새로운 복원방법을 제안하였다. 제안된 방법의 복원 능력을 검증하기 위하여 사무실에서 가장 많이 사용되는 한글을 사용하여 알파벳 대소문자, 숫자, 특수문자로 구성된 문서를 만들어 실험하였다. 그 결과, 제안된 방법이 형태학적인 복원 방법보다 성능이 우수함을 밝혔다.
본 논문에서는 번짐 영상의 외곽선 복원을 위한 1/4 선택 필터를 제안한다. 일반적인 열화 제거 방법들은 연산량이 많아 수행시간이 오래 걸리는 단점을 가지고 있다. 따라서 속도 향상을 위해서 1/4 선택 필터를 새롭게 제안하고, 1/4 선택 필터를 이용한 번짐 영상의 외곽선 복원 방법을 제안한다. 1/4 선택 필터는 영상의 외곽선을 복원하는 기능이 있으나 세밀한 부분을 잃어버리는 단점이 있다. 이를 보완하기 위하여 영상의 주요 외곽선은 1/4 선택 필터로 복원하고 영상의 세밀한 정보는 DOG(Difference of Gaussian) 필터를 이용하여 복원하는 번짐 현상 제거 방법을 제안한다. 실험 결과를 통해 제안하는 방법이 번짐 영상에서 외곽선을 빠르고 효과적으로 복원함을 확인하였다.
본 논문에서는 영역 기반 복원 방법을 통하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 제안된 방법은 예제 기반 복원과 얼굴 영상을 형태 정보와 질감 정보로 나누어 표현하는 변형 가능 얼굴 모형에 기반한다. 먼저, 예제 기반 복원 방법의 성능을 개선하기 위하여, 전역 복원 결과와 국부적 복원 결과를 결합하는 영역 기반 복원 방법을 제안한다. 또한, 변형 가능 얼굴 모형의 장점을 해상도 복원에 적용하기 위하여, 확장된 변형 가능 얼굴 모형을 정의한다. 제안된 모형에서 얼굴 영상은 저해상도 얼굴 영상, 보간법을 통해 개선한 고해상도 얼굴 영상, 그리고 원래의 고해상도 얼굴 영상의 쌍으로 구성되며, 이는 다시 확장된 형태 정보와 확장된 질감 정보로 나뉜다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있는 가능성을 확인하였다.
본 논문에서는 공간적 보간을 응용하여 손상된 영상 구획의 데이터를 복원하는 기법을 제시한다. 이러한 기법은 손상된 영상을 부가 정보 없이 복원하는 오류 은폐의 핵심으로 Park[3], Wang[4], Sun[9], Lee[7], Hemami[8] 등에 의해서 여러 가지 기법들이 제안되었다. 그러나 이러한 기법들은 단순히 주변 구획과의 경계면에서의 연속성만을 고려하여 복원하므로 구획 내부의 데이터를 복원하는데 한계가 있으며 계산량도 많은 단점이 있다. 따라서 본 논문에서는 이러한 기존의 기법들의 단점을 극복하기 위하여 Non-Unform Rational B-Spline(NURBS)을 응용한 복원 기법을 제안한다. 제시된 주변 구획의 오류 유무와 윤곽선의 방향에 따라 주변 구획의 화소 정보에 할당되는 가중치를 적절히 변경하여 NURBS를 적용한다. 따라서 윤곽선의 방향을 더욱 견실하게 복원함으로써 주관적, 객관적 관점에서 기존의 기법보다 우수한 영상 구획 복원 성능을 얻을 수 있다. 정지 영상에 대한 컴퓨터 모의 실험 결과 제안하는 알고리듬을 기존의 기법보다 30% 구획 손실율에서 0.5 dB이상 성능 향상을 얻을 수 있음을 관찰하였다.
본 논문에서는 과다 노출된 영상을 영상 간 변환(Image-to-Image Translation)을 위해 설계된 적대적 생성 신경망(Generative Adversarial Network)을 활용하여 복원하는 연구를 수행한다. 과다 노출 복원을 위한 기존의 연구에서 과다 노출 영역 판별, 밝기 회복, 색상 보정 과정을 거치는데, 영상 내 과다 노출 영역을 판별하는 과정에서 임의로 결정하는 파라미터에 의해 복원된 영상 결과가 달라지는 한계점을 극복하기 위해 종단간(End-to-End) 신경망을 학습시켜 과다 노출 영역을 별도의 파라미터 선택과 분할된 과정 없이 한 번에 복원하는 방법을 제안한다. 영상 간 변환 신경망 학습에 필요한 과다 노출 여부로 도메인이 분할된 데이터셋은 게임 소프트웨어를 활용하여 만들어 사용하였다. 본 연구에서는 신경망이 생성한 영상이 실제로 과다 노출 영역을 탐지하여 복원하는 것을 확인하였다. 그리고 과다 노출 영역을 탐지하여 복원하는 과정을 학습 단계별로 확인함으로써 신경망이 실제로 과다 노출 복원 과정을 학습함을 보였다.
이미 방송된 비디오 영상으로부터 자막 영역을 제거하고 원 영상으로 복원할 필요가 종종 발생한다. 복원될 영상의 량이 적을 경우 수 작업에 의한 복원이 가능하나, 비디오 영상과 같이 복원할 영상이 많아질 경우에는 수 작업에 복원은 어렵다고 볼 수 있다. 따라서 자동으로 자막 영역을 원 영상으로 복원할 수 있는 방법이 필요하게 된다. 기존의 영상 복원에 관한 연구는 주로 블러링(blurring)된 영상을 주파수 필터를 사용하여 선명하게 복원하거나, 영상 통신을 위한 비디오 코딩 방법에 대한 연구가 많이 이루어졌다. 본 논문에서는 블록 정합 알고리즘(Block Matching Algorithm)을 이용하여 자막 영역을 복원하는 방법을 제안하고자한다. 자막 복원을 위한 사전 정보로 자막 영역 정보와 장면 전환 정보를 추출한다. 추출된 자막 정보로부터 자막의 시작 프레임, 끝 프레임, 자막 문자의 구성 요소 정보를 얻을 수 있다. 자막 정보(자막의 시작 프레임, 끝 프레임)와 장면 전환 정보를 이용하여 복원의 방향성 및 복원의 종점을 결정한다. 복원의 방향성에 따라 각 프레임마다 문자의 구성 요소에 대한 블록 정합을 수행하여 원 영상을 복원한다. 실험결과 비교적 움직임이 적은 영상에서는 복원이 잘 됨을 볼 수 있었으며, 복잡한 배경을 갖고 있는 영상의 경우도 복원됨을 볼 수 있었다.
본 논문에서는 기존의 칼라 항상성(color constancy) 알고리즘을 기반으로 한 새로운 영상 복원 방법을 제안한다. 이 방법은 인간의 시각 특성을 선형 모델로 표현한 칼라 항상성 모델을 이용한다. 칼라 항상성 모델에서 가장 중요한 과정은 영상의 광원을 추정하는 것이다. 이론 위하여 영상에서 명도 값이 가장 큰 화소의 값을 이용하며, 이 값을 각 수광체(photoreceptor)의 응답으로 대체한다. 추정된 광원을 이용하여 만들어진 영상을 일정한 비율로 스케일링하여 영상을 복원한다. 실험을 통하여 제안한 항법으로 영상 복원이 잘 됨을 알 수 있었다.
본 논문에서는 이미지 데이터의 저작권 보호를 위해 영상변형, JPEG 손실 압축 및 임펄스 잡음에 효과적인 새로운 DM/SS (Direct Matrix/Spread Spectrum) 이미지 워터마킹 기법을 제안한다. 제안하는 기법은 워터마크 영상을 저작권자의 개인 ID (IDentification)로 확산시킨 다음, 원 영상에 삽입하고 역확산시켜 복원하는 방법이다. 원터마크 영상은 2진 영상을 사용하고, 워터마크 시스템에서 요구되는 비가시성과 외부 공격에 대한 워터마크의 강인성을 확인하기 위하여 PSNR (Peak Signal to Noise Ratio)과 워터마크 영상의 복원율 (reconstructive rate)을 구한다. 실험 결과, 워터마크가 삽입된 영상의 PSNR은 93.75 dB로 화질저하가 거의 없었고, 확산 이득으로 인하여 32$\times$32 워터마크 영상이 삽입된 영상에서 우수한 워터마크 영상의 복원율을 얻는다는 것을 보인다. 영상변형 및 JPEG 손실 압축 하에서도 우수한 워터마크 복원 결과를 보였고, 임펄스 잡음이 첨가된 영상의 PSNR이 5.54 dB인 경우에도 효과적으로 워터마크 영상을 복원할 수 있다는 것을 알 수 있었다.
본 논문에서는 영상에서 일부 정보가 손실 또는 손상된 경우에 대해서 홉필드 네트워크를 적용하여 영상을 복원하는 방법을 제안한다. 제안된 방법은 영상을 그레이 영상으로 변환한 후, 퍼지 이진화 기법을 적용하여 영상을 이진화한다. 이진화된 영상에 홉필드 네트워크를 적용하여 영상의 특징들을 학습한다. 따라서 영상의 일부 정보가 손실되거나 잡음이 있는 영상에서 퍼지 이진화 기법을 적용하여 이진화한 후, 이진화된 결과를 홉필드 네트워크에 적용하여 영상을 복원한다. 제안된 방법을 5장의 그레이 영상을 대상으로 실험한 결과, 퍼지 이진화 기법과 홉필드 네트워크를 적용한 방법이 잡음이 있거나 영상의 정보가 손실된 영상에서 복원 정도가 높은 것을 실험을 통하여 확인하였다.
기존의 예제기반 초해상도 복원은 다수의 외부영상을 이용한 사전 생성 방법과 단일 영상을 이용한 자기참조 예제기반 복원 방법이 있지만, 입력영상의 특성과 패치사전에 따라 복원 성능이 저하되는 문제점이 있다. 이러한 문제점을 개선하기 위해서, 본 논문에서는 멀티 프레임의 움직임 정보를 이용하여 적응적 패치 선택을 통한 초해상도 영상복원 방법을 제안한다. 제안하는 초해상도 영상 복원 방법은 3가지 단계로 구성된다. i) 인접한 프레임간의 움직임 정보를 이용한 로컬 영역을 정의, ii) 단계적 열화를 이용한 적응적 패치 검색 방법, iii) 최적의 패치검색을 통한 패치 결합 및 초고해상도 영상복원이다. 결과적으로 제안하는 방법은 인접한 프레임간의 움직임 정보와 단계적 열화를 이용하여 패치를 검색함으로써 패치 검색의 정확성을 높여주고, 동영상에서 부자연스러운 현상이 제거된 초해상도 영상 복원이 가능하다. 실험결과에서는 기존의 초해상도 영상복원 방법과 비교할 때 복원 부작용이 감소되어 자연스럽게 복원된 영상을 제공하는 동시에, peak-to-peak signal noise ratio (PSNR)과 structural similarity measure (SSIM)를 사용한 객관적 성능 향상을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.