• Title/Summary/Keyword: 열 등가응력

Search Result 37, Processing Time 0.023 seconds

An Estimation of Equivalent Heat Source for Thermal Analysis of Steel Deck Bridge under Pavement Procedure (강바닥판 교량의 포장시 열영향 해석을 위한 등가열원 산정기법)

  • Chung, Heung-Jin;Yoo, Byoung-Chan;Lee, Wan-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.653-660
    • /
    • 2007
  • Since the temperature of asphalt for deck plate of steel bridge during paying procedure is relatively high as $240^{\circ}C\;to\;260^{\circ}C$, the temperature of deck plate of bridge rises mere than $100^{\circ}C$ and excessive displacement and stress could occur. In order to avoid undesirable failure of base plate and determine the optimal pavement pattern, a thorough thermal analysis is needed. General structural model which is made of beam and plate element should be modified for transient heat transfer analysis; asphalt pavement material and convection effect on surface of structure need to be added. A new technique with the Equivalent Heat Source (EHS) for numerical thermal analysis for steel bridge under thermal load of Guss asphalt pavement is proposed. Since plate/beam elements which were generally used for structural analysis for bridge cannot explain convection effect easily on plate/beam surface, EHS which is determined based on calculated temperature with convection effect is used. To verify the EHS proposed in this study, numerical analyses with plate elements are performed and the results are compared with estimated temperatures. EHS might be used for other thermal analyses of steel bridge such as welding residual stress analysis and bridge fire analysis.

Convergent Analysis through Durability by Thermal Stress at Drum Brake (드럼 브레이크에서의 열응력에 의한 내구성을 통한 융합적 분석)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.139-144
    • /
    • 2020
  • In this study, a simulation analysis on the drum itself and the brake was examined. And the analysis results were obtained by investigating the thermal analysis results and the durability through structural analysis. Through the thermal stress and structural analyses on the lining under the force due to the brake cylinder, the drum inside under the force due to the expansion of the lining and the drum under the force due to the rotation of the axis, it was confirmed at which part the amounts of equivalent stress and deformation became large. If applied to the brake disc design by combining the results of this study, it is considered to be large utilization at increasing the prevention against the thermal deformation and its durability. The results of this study can be usefully applied to the durability design that can withstand the thermal stress in the drum brake. By applying the durability analysis at the seam of railroad track by season, this investigation result is seen to be favorable as the convergent research applied to the aesthetic design.

Thermal and Stress Analysis of Power IGBT Module Package by Finite Element Method (유한요소법에 의한 대전력 IGBT 모듈의 열.응력해석)

  • 김남균;최영택;김상철;박종문;김은동
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.23-33
    • /
    • 1999
  • A finite element method was employed fort thermal and stress analyses of an IGBT module of 3-phase full bridge. The effect of material parameters such as substrate material, substrate area, solder thickness on the temperature and stress distributions of the module packages has been investigated. Thermal analysis results have also been compared by setting of boundary conditions such as equivalent heat transfer coefficient or constant temperature at a base metal surface of the package. The increase of ceramic substrate area up to 3 times does little contribution to the reduction(8.9%) of thermal resistance, while contributed a lot to the reduction(60%) of thermal stress. Thicker solder resulted in higher thermal resistance but did slightly reduced thermal stresses. It is revealed by the stress analysis that maximum stress was induced at the region of copper pads which are bonded with ceramic substrate.

  • PDF

Thermal Analysis of Vehicle Radiator (차량용 라디에이터의 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This study analyzes the thermal stress at automotive radiators on steady and transient states. The maximum displacement is shown at the lower corner of upper tank with the value of 0.51mm. The displacement becomes smaller at the center of radiator and it becomes larger at this edge. The maximum thermal stress with the value of 62 MPa is shown at the contact between upper tank and cooling plate. Thermal maximum stress with the transient state at the elapsed time of 10 second is lower than that at steady state as much as 0.7%.

  • PDF

Thermo-Mechanical Stress Analysis of Power Generation Turbine Blades (발전용 터빈 블레이드의 열기계 응력 해석)

  • Kim, Jong-Un;Lee, Soo-Yong;Park, Jung-Sun;Lee, An-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.84-91
    • /
    • 2002
  • Temperature distribution in the GTD111 turbine blade used in power plaints is calculated by heat transfer analysis. Linear stress analysis of the turbine blade is also carried out under thermal loads and centrifugal forces. The numerical results of steady state heat transfer analysis slow that high temperature distribution occurs at the leading edge and tip section of the blade. The thermal stress result indicates that the equivalent stress at the tip of the pressure surface is higher than other sections of the blade. Maximum centrifugal stresses without the thermal effect occurs at the front of the fir tree. From the thermal-centrifugal stress analysis, maximum equivalent stress occurs at the fir tree. Stresses applied by the thermal loads and centrifugal forces are less than the yield stress. The GTD111 turbine blade is safe to be used in the power plants.

A study on the Thermal Stress Distribution for Wire Electrical Discharge by Finite Element Method (와이어 방전 가공 시 발생되는 열응력 분포에 관한 유한요소법적 고찰)

  • 반재삼;김승욱;김선진;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.210-213
    • /
    • 2002
  • The Purpose of this study is to know temperature and thermal stress distribution in specimens during processing of WEDM. If it is constant to the cutting speed and the thickness of material, it is very important to the effect of temperature and the thermal stress distribution after cutting processing. This paper show the analysis result of the distribution of temperature and the residual stress along the direction of thickness before processing of WEDM and after when the cooling temperature is$20^{\circ}C$. The maximum temperature of edge of specimens is $1600^{\circ}C$. It has little temperature gradient in the depth which is 5mm away from edge of specimens. Equivalent residual stress is result in 180.7 MPa at maximum temperature.

  • PDF

A Thermal Stress Analysis of Beams with Out-of-Plane Warping (면외 워핑함수를 고려한 보 구조물의 기계 및 열응력 해석)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper, a methodology, which is able to predict the thermal stresses accurately yet efficiently, is presented for beam structures via Saint-Venant's principle. In general, higher-order beam theories have been known to be effective for the prediction of thermal stresses. In contrast to this, we propose the method to predict the thermal stresses of beam structures by post-processing the classical beam theory via Saint-Venant's principle. The approach includes an out-of-plane warping displacement to account for the through-the-thickness thermal deformation. With this, one can accurately recover the thermal stresses as compared to the elasticity solutions. In fact, they are identical for the beams made of isotropic materials. The effect of out-of-plane warping is also investigated, it turns out that the effect is negligible in mechanical stress analysis but not in thermal stress analysis.

An Application of Equivalent Heat Source for Thermal Analysis of Pavement Process (포장시 열영향 해석을 위한 등가열원의 적용성)

  • Lee, Wan-Hoon;Yoo, Byoung-Chan;Chung, Heung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.391-399
    • /
    • 2008
  • Because of relatively high temperature, over $240^{\circ}C$, of asphalt for steel deck bridge during pavement procedure, the temperature of deck could rise over $100^{\circ}C$ and undesirable excessive displacement and thermal stress could occur. In this study, in order to estimate the thermal effect of pavement process and to find the optimal pavement process, a new thermal analysis technique with Equivalent Heat Source (EHS) is proposed and its applicability to the practical pavement of steel bridge is studied. EHS is developed to simulate the high temperature pavement materials and its thermal effect such as conduction and convection which cannot be explain easily in general structural analysis program for bridge design. To verify the applicability of new analysis technique with EHS, thermal analyses of steel deck bridge with uplift and curved bridge with various pavement procedures are presented.

Evaluation of Blank Heating Processes by Thermal Stress Analysis (열응력 해석에 의한 블랭크 단조품 가열공정 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4375-4380
    • /
    • 2015
  • This study was performed to evaluate a newly proposed heating process of blank, which was used for Crank throw in the diesel engine, and provide design guidelines of heating processes. Non-linear numerical analyses were done using ANSYS program to investigate temperature and thermal stress distributions of blank during heating processes. The heating process consists of two stages; one is a heating stage with 20 hours, and the other is a holding stage with 12 hours, totaling 32-hour heating time. Based on analysis results, it was found that the temperature difference between the center and the surface of blank increased linearly during the heating stage but decreased gradually during the holding stage of heating processes, while max. equivalent stress, $12.5kg/mm^2$, was found at the center of blank after 10-hour heating time. As the guideline of blank heating process, it was recommended to keep the temperature difference between the center and the surface of blank to be within $150^{\circ}C$ when the environment temperature in furnace reaches $650^{\circ}C$ during a heating stage.

Thermal Analysis According to Material of Manifold (매니폴드 재질에 따른 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.33-37
    • /
    • 2009
  • Manifold could apply stainless steel with light weight and durability to improve fuel efficiency at automotive industry. This study is analyzed and compared by heat transfer and deformation according to the materials of cast iron and stainless steel. The heat transfer at manifold of cast iron at the distribution of heat temperature is more than that of stainless steel. But the value of maximum heat deformation in case of stainless steel is 1.5 times as great as that in case of cast iron. The value of maximum heat equivalent stress in case of stainless steel is 2.7 times as great as that in case of cast iron. This maximum stress at manifold is shown at the part assembled with engine body.

  • PDF