DOI QR코드

DOI QR Code

Evaluation of Blank Heating Processes by Thermal Stress Analysis

열응력 해석에 의한 블랭크 단조품 가열공정 평가

  • Park, Sang-Chul (Department of Naval Architecture & Ocean Engineering, Koje College)
  • 박상철 (거제대학교 조선해양공학과)
  • Received : 2015.04.08
  • Accepted : 2015.07.16
  • Published : 2015.07.31

Abstract

This study was performed to evaluate a newly proposed heating process of blank, which was used for Crank throw in the diesel engine, and provide design guidelines of heating processes. Non-linear numerical analyses were done using ANSYS program to investigate temperature and thermal stress distributions of blank during heating processes. The heating process consists of two stages; one is a heating stage with 20 hours, and the other is a holding stage with 12 hours, totaling 32-hour heating time. Based on analysis results, it was found that the temperature difference between the center and the surface of blank increased linearly during the heating stage but decreased gradually during the holding stage of heating processes, while max. equivalent stress, $12.5kg/mm^2$, was found at the center of blank after 10-hour heating time. As the guideline of blank heating process, it was recommended to keep the temperature difference between the center and the surface of blank to be within $150^{\circ}C$ when the environment temperature in furnace reaches $650^{\circ}C$ during a heating stage.

선박용 디젤엔진 부품인 블랭크 단조품 가열 시 생산성 및 품질을 향상시키기 위하여 새로운 가열공정을 제안하였다. 본 연구에서는 새로운 블랭크 가열공정을 평가하고 가열공정 설계기준을 정립하기 위하여 수치해석 전용 프로그램인 ANSYS를 사용하여 재료의 비선형을 고려한 온도분포, 열응력 해석을 수행하였다. 가열조건은 승온단계와 유지단계로 구성되어 총 32시간이며 가열 시 시간경과에 따른 블랭크 내 외부의 온도분포와 열응력 변화를 평가하였다. 그 결과 가열 시 승온단계에서 블랭크 내 외부 온도차는 시간이 경과함에 따라 점차 증가하여 최종 승온단계에서 최대 온도차가 발생하나 유지단계에서 온도차는 점진적으로 감소하는 반면에 가열이 시작되어 10시간 경과 후 블랭크 내부에는 최대 등가응력 $12.5kg/mm^2$가 발생한다는 것을 알 수 있다. 따라서 단조품 가열공정을 설계함에 있어서 가열 후 10시간 경과 시, 즉 노내 온도 $650^{\circ}C$에서 블랭크 내 외부 온도차는 $150^{\circ}C$이내가 되도록 관리해야 한다.

Keywords

References

  1. F.P.Incropera & D.P. De Witt, Introduction to Heat Transfer, John Wiley & Sons Inc., 2007.
  2. B.H.Choi, S.Y.Kwak, J.T.Kim and J.K.Choi : "Heat Treatment Process Design of CrMoSC1 Steel by Prediction of Phase Transformation and Thermal Stress Analysis", Journal of the Korean Society for Heat Treatment, Vol. 18, No. 4, pp. 247-255, 2005.
  3. T.W.Lim and D.H.Cho : "Study on Heat Transfer Characteristic of Shell-and-Tube Heat Exchanger with Plate Fin", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 10, No. 1, pp. 46-51, 2009. DOI: http://dx.doi.org/10.5762/KAIS.2009.10.1.046
  4. B.Y.Lee, M.H.Im and J.Y.Shon : "Temperature Distribution and Thermal Stress Analysis of a Large LPLi Engine Piston", Journal of the Korean Society of Marine Engineers, Vol. 28, No. 3, pp. 538-550, 2004.
  5. J.U.Cho and M.S.Han : "Study on Thermal Stress and Flow Analysis at Exhaust Manifold of Car", Transactions of KSAE, Vol. 22, No. 2, pp. 23-28, 2014. DOI: http://dx.doi.org/10.7467/ksae.2014.22.2.023
  6. ANSYS Users' Manual, Version 8.1, 2007.
  7. S.C.Chu and S.S.Lian : "Numerical Analysis of Temperature Distribution of Plasma Arc with Molten Pool in Plasma Arc Melting", Computational Materials Science, Vol. 30, pp. 441-447, 2004. DOI: http://dx.doi.org/10.1016/j.commatsci.2004.03.014
  8. Metal Handbook, Vol. 1, 10th Edition, ASM, 1990.