• Title/Summary/Keyword: 열환경 평가

Search Result 930, Processing Time 0.041 seconds

Emotion Detection Model based on Sequential Neural Networks in Smart Exhibition Environment (스마트 전시환경에서 순차적 인공신경망에 기반한 감정인식 모델)

  • Jung, Min Kyu;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.109-126
    • /
    • 2017
  • In the various kinds of intelligent services, many studies for detecting emotion are in progress. Particularly, studies on emotion recognition at the particular time have been conducted in order to provide personalized experiences to the audience in the field of exhibition though facial expressions change as time passes. So, the aim of this paper is to build a model to predict the audience's emotion from the changes of facial expressions while watching an exhibit. The proposed model is based on both sequential neural network and the Valence-Arousal model. To validate the usefulness of the proposed model, we performed an experiment to compare the proposed model with the standard neural-network-based model to compare their performance. The results confirmed that the proposed model considering time sequence had better prediction accuracy.

다공성 금속 합금 폼 표면의 향상된 촉매 분산을 위해 원자층 증착법을 이용한 inter-layer의 도입

  • Lee, Yu-Jin;Gu, Bon-Yul;Baek, Seong-Ho;Park, Man-Ho;An, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.97-97
    • /
    • 2015
  • 전 세계적으로 화석연료의 고갈 및 환경오염 문제를 해결하기 위해 신재생에너지에 대한 관심이 급증하고 있다. 이러한 신재생에너지에는 수소 에너지, 자연 에너지(태양열, 지열 등), 바이오 매스 에너지 등이 포함된다. 이 중 수소 에너지는 지구상에 풍부하게 존재하고 있는 물과 탄화수소로부터 얻어지며, 연소 시에도 다시 물을 형성하여 오염 물질을 배출하지 않는 차세대 무공해 에너지원으로써 주목을 받고 있다. 수소 제조를 위한 공정에는 수증기 개질 공정(steam reforming), 부분 산화(partial oxidation) 및 자열개질(autothermal reforming) 등이 있으며 실제로 생산되는 대부분의 수소는 탄소/수소비(1:4)가 높은 메탄($CH_4$) 가스를 이용한 메탄 수증기 개질 공정(steam methane reforming)을 통하여 제조된다. 이 때 수소 제조의 고효율화 및 저비용화를 위해서는 반응물에 대한 높은 선택도, 고활성도 및 높은 안정성을 갖는 촉매가 반드시 필요하며, 대표적으로 Ni, Pt, Ru 등이 보고되고 있다. 이러한 촉매들은 대부분 세라믹 pellet 형태로 제작되어 왔으나 열전도도가 낮고 물리적 충격에 취약하다는 단점이 존재한다. 따라서 우리는 이러한 단점을 극복하고, 촉매의 활성을 높이기 위하여 다공성 금속 합금 폼을 촉매 지지체로 도입하였다. 또한, 다공성 금속 합금 폼 표면에 촉매의 분산 및 안정성을 향상시키기 위해 지지체와 촉매 사이에 원자층 증착법을 이용하여 inter-layer를 도입하였다. 이들의 구조, 형태, 및 표면의 화학적 상태는 주사전자현미경, EDS (energy dispersive spectroscopy)가 탑재된 주사전자현미경, X-선 회절, 및 X-선 광전자 분광법을 이용하여 규명하였다. 더하여 정전압-전류 측정법 및 유도 결합 플라즈마 분광 분석기을 이용하여 전기 화학 반응을 유도하고, 반응 후 전해질의 성분분석을 통해 촉매와 지지체 간의 안정성을 평가하였다. 따라서 본 결과들은 한국진공학회 하계정기학술대회를 통해 좀 더 자세히 논의될 것이다.

  • PDF

Application Techniques of 2D-Resistivity Structure for Estimation of Inferred Fracture Zone in Weathered Slope (풍화사면에서의 추정파쇄대 평가를 위한 2차원 전기비저항 구조도 적용 기법)

  • Kim, Jae-Hong;Park, Chal-Sook;Lee, Hyun-Jae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Electrical resistivity survey is applied for estimation of inferred fault and fractured zone in civil engineering and environment field. While 15 m diameter and 3 lines tunnels are excavated. It is recognized that core stone and fractured zone is existed in the weathered slope of the entrance to a tunnel. To make confirmation geological characteristics, dipole-dipole electric resistivity survey was carried out in weathered slope of the entrance to a tunnel. Core stone distribution and fracture zone characteristics are estimated by reverse analysis and 2D-resistivity structure using FDM.

Evaluation of Farmer's Workload and Thermal Environment During Harvesting Grape in Summer (여름철 포도 수확 작업 농민의 작업 환경 및 노동 부담 평가)

  • 최정화;김명주;이주영
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.11
    • /
    • pp.193-205
    • /
    • 2002
  • To evaluate farmers' workload during harvesting grapes in summer, this study investigated farmers' physiological, psychological responses, work postures and thermal environment around in the field. This field study was conducted in the Anseong County of Kyonggi Province at the end of August. Five career farmers (1 male, 4 females) volunteered as subjects. Three of them were over their sixties. During harvesting grapes in the field, physiological responses were monitored continuously. 1. Air temperature (T/sub a/), air humidity(H/sub a/), black globe temperature(T/sub g/), air velocity and WBGT around the grape field were 26.9℃, 77.7%RH, 32.8℃, 0.08㎧ and 26.3℃, respectively. Because farmers started the harvesting task in early morning, thermal environments weren't conditions to give farmers severe heat strain. 2. The percentage of the work postures was larger in order of standing, walking, and bending one's back posture. Particularly, the percentage of standing posture with raising both arms above shoulder of two farmers was up to 29% and 61% of the total work duration. 3. Rectal temperature (T/sub re/), mean skin temperature (T/sub sk/), clothing microclimate temperature (T/sub cl/) on the chest and the back, heart rate (HR) and energy expenditure (EE) were 37.2℃, 33.1℃, 32.0℃, 32.4℃, 88bpm and 1.3 Kca1/㎡/min respectively. In the point of these physiological results, we evaluated that the harvesting task was a moderate work. 4. All farmers expressed‘hard, hot, humid and slightly uncomfortable’ at the end of works for each subjective questionnaire. The grape harvesting tasks were not evaluated as a very hard work in the point of physiological work standards. But we considered 1) inappropriate work posture (standing posture with raising both arms above shoulder) and 2) farmers' age as burden factors. These findings suggest that adding adequate protective clothing/equipments for farmers may contribute to maintain their body temperature within the normal range, stabilize HR and decrease psychological strain.

A Study on the Structural Integrity of the First Stage Turbine Blade Caused by Thermal Barrier Coatings and the Cooling Design of the Nozzle (터빈 노즐 및 열차폐 코팅에 따른 고압 1 단 터빈 블레이드의 구조 건전성 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • High pressure nozzles and turbines of a gas turbine engine should be required to be operated under extreme operating conditions in order to maximize the performance. Engine manufactures have utilized nickel-base superalloys, enhanced cooling design, and thermal barrier coating techniques to overcome them and furthermore, material modeling, finite element analysis, optimization techniques, and etc. have been utilized widely for elaborate predictions. We aim to evaluate the effects on the low cycle fatigue life of the high pressure turbine blade caused by thermal barrier coatings and the cooling design of the endwall of the first stage turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and then the results were the input for the assessment of low cycle fatigue life at several critical zones.

Development of Ergonomic Performance Enhanced Cycle Wear by Taping Therapy (테이핑 요법을 응용한 근력강화형 싸이클웨어의 개발)

  • Cho, Seong-Hun;Son, Seung-Yi;Koo, Young-Suk;Han, Nam-Ki;Hong, Sang-Gi;Kim, Hwan-Jik
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.96-96
    • /
    • 2012
  • 최근 주 5일제 근무 실행과 사회복지의 확산, 여가 선용에 대한 욕구와 더불어 건강증진에 대한 싸이클이 주목을 받고 있음. 싸이클웨어(Cycle Wear)에 요구되는 개발요소는 경기력 향상을 위한 기능적 요소와 패션성을 부여하는 심미적 요소로 크게 구분 가능하며 해외에서는 기능성과 패션성이 적절하게 조화를 이룬 제품을 계속 출시되고 있음. 본 연구에서는 운동 시 발생하는 열을 흡한속건 기능으로 효과적으로 발산하고 동절기에는 보온 기능을 갖는 세섬도 하이멀티 OY형 이형단면사 및 잠재권축사를 이용한 고신축 환편 및 경편물 개발하고, 극한환경에서도 고견뢰도를 유지할 수 있는 섬유의 염색법 및 기능성 발현 가공법의 적용, 내마모성과 필링이 우수한 아라미드+나일론 복합가공사 신축직물 제직 및 염색가공 공정 개발을 통해 기능성을 발현할 수 있는 싸이클 웨어 원단을 개발하였음. 또한 종래 Compression Wear에만 적용하던 테이핑 요법을 응용한 근력강화형 싸이클웨어 패턴과 디자인 개발을 통해 다양한 형태의 근력강화형 싸이클웨어를 개발하였으며, 무산소파워, 유산소파워, 젖산분석, EMG 분석 및 에너지 대사분석 등의 운동능력 성능평가를 통해 테이핑 요법이 적용된 싸이클웨어의 근력강화 효과를 확인하였음. 이와 같이 개발된 싸이클웨어는 무산소파워, 유산소파워, EMG 분석에서 각각 근력강화 효과를 보였으며, 피로물질인 젖산의 경우는 발생의 정도가 낮게 나타났음. 또한 여성에 비해 남성의 근력강화 효과가 크게 나타나는 경향을 보였음.

  • PDF

Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing (파이로 공정 세라믹 폐기물을 위한 처분용기의 설계, 제작 방안, 그리고 기능 평가)

  • Lee, Minsoo;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

LN2 storage test and damage analysis for a Type 3 cryogenic propellant tank (타입 3 극저온 추진제 탱크의 액체질소저장 시험 및 파손 분석)

  • Kang, Sang-Guk;Kim, Myung-Gon;Park, Sang-Wuk;Kong, Cheol-Won;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.592-600
    • /
    • 2007
  • Nowadays, researches for replacing material systems for cryotanks by composites have been being performed for the purpose of lightweight launch vehicle. In this paper, a type 3 propellant tank, which is composed of the composite developed for cryogenic use and an aluminum liner, was fabricated and tested considering actual operating environment, that is, cryogenic temperature and pressure. For this aim, liquid nitrogen (LN2) was injected into the fabricated tank and in turn, gaseous nitrogen (GN2) was used for pressurization. During this test procedure, strains and temperatures on the tank surface were measured. The delamination between hoop layer and helical one, was detected during the experiment. Several attempts were followed to investigate the cause analytically and experimentally. Thermo-elastic analysis in consideration of the progressive failure was done to evaluate the failure index. Experimental approach through a LN2 immersion test of composite/aluminum ring specimens suitable for simulating the Type 3 tank structure.

Structure Detection of Transmission Frame Based on Accumulated Correlation for DVB-S2 System (DVB-S2 시스템에서 상관 누적을 이용한 전송프레임 구조 검출)

  • Jeon, Hanik;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Frame synchronization is achieved by correlation between received symbols and a preamble pattern which is periodically appended at a frame header. In this paper, we deal with a frame detection method complaint with satellite-based DVB-S2 system. In DVB-S2, frame synchronization is performed under the low signal-to-noise ratio(SNR), a large frequency offset which can be up to 20% of a symbol transmission rate and unknown modulation schemes ranging from QPSK to 32-APSK. In this environment, we propose a method combining differential correlation based on SOF and PLSC with an accumulated correlation method for the detection of frame structures. In addition, detection performances about mean acquisition time(MAT) and detection error probability are evaluated via computer simulations.

An experimental study on the performance of the separate type heat pipe in accordance with the refrigerant charge (냉매 충진량에 따른 분리형 히트파이프 성능에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1600-1604
    • /
    • 2015
  • As modern houses are constructed with high-density and high-insulation, there is benefit to reduce energy consumption, but there are many side effects raised from polluted air. To solve the problem, a ventilation system is used to improve a indoor air quality. In this research, we experimentally estimate ventilation performance of HRV(heat recovery ventilator) with heat-pipe according to working fluid filling quantity and ventilation. Heat-pipe used in this study was designated separately to be applied to a ventilation system. The working fluid was R22, which was filled from 40 to 55 (%vol.) by 5(%vol.). Ventilation based on the front velocity was measured from 0.3 m/s to 1.5 m/s by 0.3 m/s intervals. Refrigerant filling quantity with the highest efficiency was found to depend on the ventilation. From this study the optimal refrigerant filling quantity in accordance with the ventilation of the detachable heat pipes was found experimentally.