• Title/Summary/Keyword: 열차 지반진동

Search Result 33, Processing Time 0.025 seconds

Appropriateness Evaluation of Train Vibration Evaluation Method Considering Vibration Levels of Retaining Wall Adjacent to Railway Tunnels (철도터널과 인접한 흙막이 가시설의 진동 수준을 고려한 열차진동 평가방법의 적정성 평가)

  • Donghee Woo;Yeongjin Lee;Yongjae Song;Kangil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.5-13
    • /
    • 2023
  • With the recent increase in development projects centered on urban areas, the construction of building structures is increasing in areas adjacent to the urban railway operation section. In this case, since ground vibration is generated by the train in operation and affects the adjacent structure, the building structure needs appropriate vibration reduction against train vibration generated at the adjacent location from the desing phase. However, the vibration levels calculated vary depending on the train vibration evaluation method, which means that the implementation of vibration reduction may vary depending on the train vibration evaluation method. Therefore, this study calculated the vibration level according to ground conditions, tunnel depth and separation distance between vibration sources and adjacent structures using numerical analysis and train vibration evaluation methods, and compared them to designning phase. And the appropriate separation distance between the tunnel and the adjacent structure was evaluated by comparing the vibration level with the allowable standards. As a result of the study, the Ungar and Bender evaluation method is evaluated as the most appropriate among the train vibration evaluation methods, and the appropriate separation distance between the tunnel and the adjacent structure is evaluated to be more than 4.5D.

Field Tests Investigating the Ground Borne Vibration Induced by Underground Railway Tunnel (터널 내 열차주행으로 인한 지반진동 현장측정시험)

  • Ahn, Sung-Kwon;Bang, Eun-Seok;Lee, Bae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • This paper describes the instruments used, and the test procedures adopted, and the findings obtained from a research project aiming to investigate, via full-scale field tests, the ground borne vibration caused by underground railway tunnel constructed in hard rock. The ground borne vibration induced by high-speed trains (i.e. the Korea Train eXpress (KTX) services) with a speed of approximately 200km/hr was measured inside the borehole constructed in the close proximity to the KTX tunnel using 3-component borehole seismographs in order to investigate the wave propagation of ground borne vibration. This paper also discusses the limitation associated with the current practice of measuring ground borne vibration using conventional borehole seismograph.

Development of Analysis Method and Computer Program for Train-induced Ground Vibration (철도연변 지반진동 예측기법 및 전산프로그램 개발)

  • 황선근;엄기영;고태훈;이종재
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.203-210
    • /
    • 2000
  • Recently, environmental vibration by train operation has been getting such an attention that the ISO puts it into the environmental vibration regulation. However, the reasonable and efficient countermeasures against such a kind of vibration is not well established, especially in residential areas near the railroad. Therefore, it is very important to estimate the ground vibration induced by the train operation for the design and construction of track supporting structures as well as structures near the track. In this study a model estimating dynamic load on track due to train operation and analysis technique of propagation of ground vibration were developed. Futhermore, the estimated vibration from this model was compared with the actual measurement data in the field and found to be reasonably acceptable.

  • PDF

Measurement and Analysis of Ground Borne Vibrations Resulting from Railroad Operation (열차 주행에 의한 지반진동의 계측 및 분석)

  • 목영진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.15-54
    • /
    • 1993
  • Ground Vibrations were measured at one location near the railroad track at a site about 3.2 kilometers north of Chapel Hill, Tennessee, U.S.A., Measurements were made during the passage of 18 freight trains over the six-day period. The objective of this study was to evaluate ground vibration levels from train and other traffic at possible construction depths for the Superconducting Super Collider(SSC), The criterion with which the vibration levels are compared is the more stringent one : that is, 0, 0005 inchs(about 0.0127 m) at 3H2, The measurements show conclusively that vibration levels generated by railroad traffic in the rock at the depth of 100 it (30m) or more are at least 10 times smaller than the criterion.

  • PDF

Transmissibility Effect Evaluation of Buildings Near Railroad Areas (철도인접지역 건물에 대한 진동전달율의 영향성 평가)

  • Kim, Ji-Hyeon;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.131-138
    • /
    • 2011
  • For train vibration influence assessment of newly constructed buildings in building design levels, 4 train measured vibration acceleration responses were used to compare with TR theory values and suitability of TR values was proposed. Through this TR method, construction planned grounds located near railroad areas were selected and ground vibration measurement was conducted. Through natural frequency by MIDAS, vertical acceleration response, and ground frequency from measured vibration response, TR was calculated and vibration prediction was conducted. As a result of comparing acceleration response estimate applying TR and measured value of train vibration acceleration response, it was found that it was in 3.61%~37.1% of margin of error. Clear peak of 7.19~10.61Hz in KTX, Gyungeuisun, and cement train were confirmed.

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.

Prediction of the Intensity of Vibration Around the Crossing Part of Manganese Turnout (망간분기기 크로싱부 인근의 진동 발생수준 예측)

  • Eum, Ki-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.61-66
    • /
    • 2008
  • In railroad operation, turnout is the device designed to provide very critical functions of moving the train to the neighboring rail. It's the only movable section among the rail and track equipment, which has a complicated structure and as rapid movement between the wheel and rail during operation is unavoidable, the safety and the vibration caused by the impact load of the passing train becomes always the major concern. Response to rail vibration tends to vary depending on physical properties of the rail, rail base and the ground, making it difficult to estimate the quantitative outcome through the measurement. Thus, experimental or empirical approach, rather than an analytic method, has been more commonly employed to deal with the ground vibration. To predict the vibration of the turnout, an experimental value and the measured values are applied in parallel to the factors with a high degree of uncertainty. This study hence was intended to compare and analyze the vibration values measured at the crossing part of manganese turnout by type of train and turnout and distance, as well as predict the intensity of vibration generated at the crossing part of manganese turnout when tilting train accelerates.

Ground Vibration Analysis for Light Rail Transit on Bridges (교량구간에서의 경량전철에 의한 지반진동 해석)

  • 김두기;이종재;윤정방;김두훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.71-82
    • /
    • 2000
  • Ground vibration analysis methods for Light Rail Transit(LRT) on bridges are studied. LRT loads acting on the piers are evaluated considering interactions between trains and a bridge. Two dimensional in-plane and axisymmetric wave propagations are used in ground vibration analyses, and then the results of them are compared one another. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves. Parametric studies are carried out for various train speeds, bridge types and geotechnical conditions to investigate the characteristics of ground vibrations.

  • PDF

Study on the Improvement of Empirical Formula for Prediction of Ground Vibration Induced by Urban Rapid Transit (도시철도 지반진동 예측식 개선에 관한 연구)

  • Shin, Han-Chul;Cho, Sun-Kyu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.357-363
    • /
    • 2009
  • In this paper, field measurements in the subway tunnel and adjacent building were performed to predict the pound vibration level induced by urban rapid transit (subway) in Seoul, Korea. From the results of the measurements, the measured ground vibration level induced by subway in Seoul is smaller than the empirical formula of New York, but it is bigger than the empirical formula of Tokyo which has been commonly used in Korea. We suggested the empirical formula for prediction of ground vibration level induced by subway in Seoul considering on the wave propagation path for soils or rocks, respectively.