• Title/Summary/Keyword: 열적 재활용

Search Result 35, Processing Time 0.027 seconds

A Study on Landfill Reduction Possibility by Characteristics of Industrial Thermal Treatment Residues (사업장 열적처리 잔재물의 특성에 따른 매립저감 가능성 연구)

  • Lee, Suyoung;Kim, Kyuyeon;Jeon, Taewan;Shin, Sunkyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • The government is promoting recycling of waste resources through the enactment of Fundamental Law on Resource Circulation, the revision of the Wastes Control Act and zero-landfilling of untreated waste through improved processes such as recycling and diversification. As of 2015, the total amount of landfilled waste is 38,308 ton/day in Korea. The amount of landfilled waste from industrial sectors is 23,577 ton/day, accounting for 62 % of total landfilled waste. In the study, we investigated the characteristics of the thermal treatment residue among inorganic wastes and estimated the landfill reduction potential according to the relevant recycling criteria, which can go through recycling paths. As a result, it is estimated that about 5~42 % of the landfilled waste can be reduced in case mandatory recycling and landfill suppression policies such as recycling criteria for thermal processing residues and expansion of recycling obligation targets should be implemented. In order to minimize landfill disposal, it is necessary to expand the diversity of waste recycling type and the usage of recycled products.

Recycling of Shingle Waste for Pavement Asphalt Concrete (도로포장용 아스콘으로 슁글의 재활용)

  • Hong, Young-Ho;Kwon, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.614-618
    • /
    • 2006
  • Recycling of asphalt including shingle is much important for economic aspects such as a decrease of treatment cost. This research was carried out in order to process the recycled shingle to asphalt concrete which is a pavement material. Pure asphalt and the mixture of recycled asphalt were tested in terms of the thermal characteristics, viscosity, and penetration. DSC analysis indicates that the thermal characteristics of separate shingle showed similar properties regardless of processing conditions. Melting of asphalt separated from shingle occurred at $170^{\circ}C$. The viscosity and penetration of the 1~5 wt% of mixed recycling asphalt and raw material asphalt are suitable for the pavement material standard.

Effects of Recycled PP Content on the Physical Properties of Wood/PP Composites (재활용 폴리프로필렌의 함량이 목분/폴리프로필렌 복합체의 물성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • In this study, the melt-mixing condition was optimized first to maximize the physical properties of a wood plastic composite (WPC) with recycled polypropylene (PP) and the effects of recycled PP content on the physical properties of the WPC were investigated. Mechanical properties of the WPC were measured by UTM and an izod impact tester and thermal properties were investigated by DSC, TGA and DMA. Fracture surfaces of the WPC were investigated by SEM. The optimized mixing condition of WPC with 50 wt% recycled PP of total PP was melt-mixing at $170^{\circ}C$ for 15 min at 60 rpm. With increasing the content of the recycled PP, the water absorption characteristics of the WPC increased and the thermal and mechanical properties decreased. However, the following was concluded from the analysis of all the physical properties; it was possible adding the recycled PP up to 50 wt% of total PP without a significant decrease in the performance of the WPC.

Trend for Waste Plastic Recycling Technology by Patent Analysis (특허분석(特許分析)에 의한 폐플라스틱 재활용(再活用) 기술(技術) 동향(動向))

  • Kim, Tae-Hyun;Rhee, Kang-In;Kim, Yu-Ri
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • The patents were searched to investigate the trend of recycling technologies about plastic waste. Database was collected from WIPS site and the range of the search was limited to patents opened in U.S.A (US), European Union (EU), Japan (JP) and Korea (KR) to september 2009. In this paper, 4,795 patents were selected by investigation abstracts and the trend of the recycling technologies relating to waste plastic were investigated through the analyzing by the years, countries, companies. The patents were occupied 65% by Japan and the most of the patents were about chemical recycling. In the case of Korea, material recycling was major in the patents of waste plastic recycling.

A Study of Properties of Recycled PP/EVOH/PP Scrap by Compatibilizers (상용화제에 따른 Recycled PP/EVOH/PP Scrap의 특성분석 연구)

  • Chun, Yong-Jin;Ahn, Tae-Kwang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.283-286
    • /
    • 2006
  • 식품 포장재로 사용되는 PP/EVOH/PP 다층 복합필름의 scrap 을 재활용하기 위한 기초연구로 상용화제 첨가한 PP/EVOH/Compatibilizer 블렌드의 상용화제 종류와 첨가량에 따른 재활용 수지의 열적 특성인 용융거동과 기계적 특성인 인장강도, 파단신률, 모듈러스 등의 특성을 조사하였다. 상용화제 Monato-s와 GMS를 각각 0.2, 0.5, 0.7 % 첨가한 블렌드 조성에서의 열적 특성과 기계적 특성을 확인한 결과 두 상용화제 모두 0.5 %이상의 조성 블렌드에서 PP/EVOH의 상용성을 얻을 수 있었다.

  • PDF

The Thermal and Mechanical Properties of Recycled PP/EVOH/PP Scrap with Compatibilizers (재활용 PP/EVOH/PP 스크랩의 상용화제별 열적/기계적 특성연구)

  • Chun, Yong-Jin;Ahn, Tae-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.176-181
    • /
    • 2008
  • This paper was studied the possibility on the recycling of the scrap used as the food packaging materials, PP/EVOH/PP multilayer. Recycling study was investigated into thermal and mechanical properties of samples which were mixed PP/EVOH waste plastics scrap with two kinds of compatibilizers. Melt behaviors as thermal property and tensile strength, % strain at break point, and tensile modulus as mechanical properties were investigated into kinds of and the weight ratio of compatibilizers. Mixed PP/EVOH waste plastics shows compatibity when Minanto-s and GMS as compatibilizers are mixed 0.5wt.% over.

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

Study on Recycling of Air filter PET/PP mixed Plastics from Automobiles (자동차(自動車) Air Filter PET/PP 혼합(混合) 폐(廢)플라스틱의 재활용(再活用)에 관(關)한 연구(硏究))

  • Ahn, Tae-Kwang;Kim, Hea-Tae
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • Using the post-consumer waste and edge scrap mixed PET with small amount PP air filter elements of automobiles. It was studied that these mixed waste plastics of the various types of the PET were practicable for the material recycling. Various waste PET/PP plastics were collected, crushed, dried in vacuum, and extruded to recycled PET/PP chips. These chips were mixed with three kinds compatibilizers, EVA, MBS, and recycled PVB of the ratio of $3{\sim}10wt.%$ for the purpose of the compatibility for the post-consumer waste and edge scrap. We investigated mechanical and thermal properties of PET/PP mixtures which were compound with the weight ratio of compatibilizers. Compatibilizer, MBS application was showed the most excellent mechanical properties in the range of the $3{\sim}5wt.%$ EVA application was displayed good impact strength and thermal property in the range of $3{\sim}5wt.%$ Last, recycled PVB application was showed poor mechanical properties in the whole range ratio of the PVB.

Mechanical Properties of in Recyclate HIPS with Concentration of Fly Ash (再生 HIPS에 石炭灰 첨가에 따른 기계적 특성)

  • 안태광;김덕현
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.34-40
    • /
    • 2001
  • Post-consumer dairy HIPS bottles were gathered and recycled by the following processes; crushing into flakes, chemical treatment for the purpose of elimination aluminium caps, washing, and separation from other plastics, such as PP, PE, plasticized PVC These HIPS flakes were extruded into the chips using a single screw extruder. Recyclate HIPS chips were mixed with fly ash as an additive in the range of 5-50 wt%, which were formed from coal power plant. Recyclate HIPS chips mixed with fly ash were molded to investigate thermal and mechanical properties. Their samples, thermal and mechanical properties were measured via DSC, TGA, UTM, and impact strength analysis. The probable mechanical properties exhibited the range of 5∼30% fly ash contents for their applications.

  • PDF

Physical Properties of Mineral Hydrate Insulation Used Desulfurization Gypsum (탈황석고를 사용한 미네랄 하이드레이트 단열소재의 물리적 특성 연구)

  • Park, Jae-Wan;La, Yun-Ho;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.291-296
    • /
    • 2014
  • For the purpose of energy consumption and green-house gas reduction from building, new insulation materials with improved thermal property have been developed and used. Among new insulation materials, mineral hydrate which compensates for the defects of existing materials is using as a prominent insulation material. The fabrication method of mineral hydrate is similar to that of ALC for building structure but mineral hydrate is only used for insulation. The raw materials that make up of mineral hydrate are cement, lime and anhydrite. Especially anhydrite is all dependant on imports. In this study, Desulfurization Gypsum(DG), by-product of oil plant, was used for replacing for imported anhydrite and waste recycling. DG substituted all of anhydrite and a part of lime. Mineral hydrate used DG had analogous thermal and physical properties, compared to existing mineral hydrate.