DOI QR코드

DOI QR Code

Effects of Recycled PP Content on the Physical Properties of Wood/PP Composites

재활용 폴리프로필렌의 함량이 목분/폴리프로필렌 복합체의 물성에 미치는 영향

  • Ahn, Seong Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Dae Su (Department of Chemical Engineering, Chungbuk National University)
  • 안성호 (충북대학교 공과대학 화학공학과) ;
  • 김대수 (충북대학교 공과대학 화학공학과)
  • Received : 2013.02.13
  • Accepted : 2013.03.29
  • Published : 2014.03.25

Abstract

In this study, the melt-mixing condition was optimized first to maximize the physical properties of a wood plastic composite (WPC) with recycled polypropylene (PP) and the effects of recycled PP content on the physical properties of the WPC were investigated. Mechanical properties of the WPC were measured by UTM and an izod impact tester and thermal properties were investigated by DSC, TGA and DMA. Fracture surfaces of the WPC were investigated by SEM. The optimized mixing condition of WPC with 50 wt% recycled PP of total PP was melt-mixing at $170^{\circ}C$ for 15 min at 60 rpm. With increasing the content of the recycled PP, the water absorption characteristics of the WPC increased and the thermal and mechanical properties decreased. However, the following was concluded from the analysis of all the physical properties; it was possible adding the recycled PP up to 50 wt% of total PP without a significant decrease in the performance of the WPC.

본 연구에서는 재활용 폴리프로필렌을 첨가한 wood plastic composite(WPC)의 물성을 극대화하기 위해 먼저 용융혼합 조건을 최적화하였으며 재활용 폴리프로필렌의 함량이 WPC의 물성에 미치는 영향을 조사하였다. WPC의 기계적 특성을 측정하기 위해 만능재료시험기와 충격시험기를 사용하였고 열적 특성을 조사하기 위해 DSC, TGA, DMA를 사용하였다. SEM을 이용하여 WPC의 파단면을 관찰하였다. 전체 폴리프로필렌 함량의 50 wt%를 재활용 폴리프로필렌으로 함유한 WPC의 최적가공 조건은 $170^{\circ}C$, 15분, 60 rpm이었다. 재활용 폴리프로필렌의 함량증가는 WPC의 수분흡수성을 증가시켰고 열적, 기계적 특성을 저하시켰다. 그러나 모든 물성을 종합하여 분석한 결과 WPC의 두드러진 물성 감소 없이 전체 폴리프로필렌 함량의 50 wt%까지 재활용 폴리프로필렌을 첨가하는 것이 가능하였다.

Keywords

References

  1. S. Ghahri, S. K. Najafi, B. Mohebby, and M. Tajvidi, J. Appl. Polym. Sci., 124, 1074 (2012). https://doi.org/10.1002/app.34015
  2. N. Touati, M. Kaci, S. Bruzaud, and Y. Grohens, Polym. Degrad. Stab., 96, 1064 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.03.015
  3. A. Nasir, T. Yasin, and A. Islam, J. Appl. Polym. Sci., 119, 3315 (2011). https://doi.org/10.1002/app.32918
  4. K. Joseph, S. Thomas, and C. Pavithran, Polymer, 37, 5139 (1996). https://doi.org/10.1016/0032-3861(96)00144-9
  5. B. D. Park and J. J. Balatinecz, J. Thermoplast. Compos. Mater., 9, 342 (1996). https://doi.org/10.1177/089270579600900404
  6. H. D. Rozman, C. Y. Lai, H. Ismail, and Z. A. Mohd Ishak, Polym. Int., 49, 1273 (2000). https://doi.org/10.1002/1097-0126(200011)49:11<1273::AID-PI469>3.0.CO;2-U
  7. K. Joseph, S. Thomas, and C. Pavithran, Polymer, 37, 5139 (1996). https://doi.org/10.1016/0032-3861(96)00144-9
  8. B. V. Kokta, A. D. Beshay, and C. Daneault, Polym. Compos., 7, 337 (1986). https://doi.org/10.1002/pc.750070511
  9. S. M. Zabihzadeh, J. Thermoplast. Compos. Mater., 23, 817 (2010). https://doi.org/10.1177/0892705709353711
  10. N. S. Kazemi, T. Mehdi, and H. Elham, Holz. Roh. Werkst., 65, 377 (2007). https://doi.org/10.1007/s00107-007-0176-6
  11. L. M. Matuana, R. T. Woodhams, J. J. Balatinecz, and C. B. Park, Polym. Compos., 19, 446 (1998). https://doi.org/10.1002/pc.10119
  12. H. K. Lee and D. S. Kim, J. Appl. Polym. Sci., 111, 2769 (2009). https://doi.org/10.1002/app.29331
  13. B. S. Park and D. S. Kim, Polymer(Korea), 35, 124 (2011).
  14. S. K. Yeh and R. K. Gupta, Polym. Compo. Part A, 39, 1694 (2008). https://doi.org/10.1016/j.compositesa.2008.07.013
  15. N. Bahlouli, D. Pessey, C. Raveyre, J. Guillet, S. Ahzi, A. Dahoun, and J. M. Hiverr, Mater. Design, 33, 451 (2012). https://doi.org/10.1016/j.matdes.2011.04.049
  16. S. H. Ahn and D. S. Kim, Polymer(Korea), 37, 204 (2013).
  17. A. Elloumi, S. Pimbert, A. Bourmaud, and C. Bradai, Polym. Eng. Sci., 50, 1904 (2010). https://doi.org/10.1002/pen.21716
  18. N. Bahlouli, D. Pessey, C. Raveyre, J. Guillet, S. Ahzi, A. Dahoun, and J. M. Hiver, Mater. Design, 33, 451 (2012). https://doi.org/10.1016/j.matdes.2011.04.049
  19. W. Camacho and S. Karlsson, Polym. Degrad. Stab., 78, 385 (2002). https://doi.org/10.1016/S0141-3910(02)00192-1
  20. N. T. Phuong, V. Gilbert, and B. Chuong, J. Rein. Plast. Compo., 27, 1983 (2008). https://doi.org/10.1177/0731684407086326
  21. M. Tajvidi and A. Takemura, J. Polym. Environ., 18, 500 (2010). https://doi.org/10.1007/s10924-010-0215-y
  22. Q. Xu, Y. Cui, X. Wang, Z. Xia, C. Han, and J. Wang, J. Vinyl. Add. Technol., 16, 50 (2010). https://doi.org/10.1002/vnl.20213
  23. H. S. Yang, H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang, Compo. Struct., 72, 429 (2006). https://doi.org/10.1016/j.compstruct.2005.01.013
  24. W. Wang, M. Sain, and P. A. Cooper, Compos. Sci. Technol., 66, 379 (2006). https://doi.org/10.1016/j.compscitech.2005.07.027
  25. S. H. Huang, P. Cortes, and W. J. Cantwell, J. Mater. Sci., 41, 5386 (2006). https://doi.org/10.1007/s10853-006-0377-0
  26. S. Tamrakar and R. A. Lopez-Anido, Const. Build. Mater., 25, 3977 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.031
  27. S. Q. Shi and D. J. Gardner, Polym. Compo. Part A, 37, 1276 (2006). https://doi.org/10.1016/j.compositesa.2005.08.015

Cited by

  1. The Effect of Binder on Mechanical Properties of Kenaf Fibre/Polypropylene Composites Using Full Factorial Method vol.695, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.695.709