• Title/Summary/Keyword: wood plastic composite

Search Result 42, Processing Time 0.023 seconds

Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour (편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가)

  • Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.126-132
    • /
    • 2022
  • Wood Plastic Composite(WPC) has been mostly used for outdoor purposes such as deck materials and trails so far. In this study, WPC panels with improved antibacterial properties, total volatile organic compound emissions (TVOC), and flame retardant were manufactured to use Wood Plastic Compound as interior materials for indoor use. WPC compound was prepared by mixing Chamaecyparis obtusa wood flour with high density polyethylene(HDPE). The prepared WPC compound exhibited excellent antibacterial and antifungal properties, and the total volatile organic compound emission(TVOC) was 0.062 mg/m2·h. The WPC panel(303mm×606mm×10mm) manufactured by a twin screw extruder with the manufactured compound achieved the flame retardant grade 2 standard of KS F 2271.

Outlook for Wood Plastic Composite in aspect of Market and Technology (신 목질 복합재료인 합성목재의 전망 - 시장과 기술의 측면에서 -)

  • Han, You-Soo
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.38-42
    • /
    • 2006
  • Wood Plastic Composite(WPC) has been introduced as a new constructional material in Europe and North America. The maintenance-free durability against weather was accepted by customers and the environment-friendly merits ignited the abrupt increase of market size. Domestic major companies have kicked off the WPC business at the market of outdoor constructional materials. Due to the high contents of natural wood fiber, the production equipments should be modified to remove the moisture, to prevent thermal degradation and to promote output rates. Materials including functional fillers play a critical role in rheological properties, which affects the physical and mechanical properties of the last products. More research might be performed for synergy effects combined by various academic fields from mechanical and chemical engineering to polymer process and material science.

Feasibility of Value-added Utilization of Ash Trees Infested with Emerald Ash Borer

  • Kim, Jae-Woo;Matuana, Laurent M.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.79-87
    • /
    • 2006
  • Value-added utilization of the disposed ash trees due to the infestation by Emerald Ash Borer (EAB) was explored by converting them into particleboards (PBs) and wood-plastic composites (WPCs). The experimental result showed that PB panels could be successfully manufactured from the ash wood but compaction ratio need to be higher than 1.3 in order to meet the standard requirements listed by American National Standards Institute (ANSI). Ash wood plastic composites with high density polyethylene (HDPE) and polypropylene (PP) were also prepared with additives by extrusion. Physical and mechanical properties of ash wood plastic composite compared favorably to those made of pine and maple.

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

A Feasibility Study of Wood-plastic Composite Paver Block for Basic Rest Areas

  • Yang, Sungchul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.51-65
    • /
    • 2019
  • A wood-plastic composite (WPC) paver block was manufactured using wood chips waste through an extrusion process, and it was intended to be used for paving in basic rest areas. The first stage in this study covered preliminary tests in terms of flexural strength and dimensional swelling to determine the optimal WPC compounding mix condition, by variation of the WPC ingredients. Next, three different paver blocks including the WPC block, a non-porous cement block, and a porous cement block were tested in terms of various material properties in the laboratory. Finally, two outdoor test sections of the proposed paver blocks were prepared to simulate a basic rest area. Test results indicated that the flexural strength of the WPC paver blocks was about 1.6 times greater than that of the tested cement paver blocks. The WPC block pavement was unaffected by water buoyance as well as volume expansion due to swelling. Results from the impact absorbance test and light falling weight deflectometer (LFWD) test clearly showed that the WPC block paving system marginally satisfied the comfortable and safe hardness range from the pedestrians' perspective, while the results demonstrated that it is structurally sound for application as a road paving block.

Properties of WPC Prepared with Various Size and Amount of Wood Particle (목편의 크기와 함량이 복합재료의 물성에 미치는 영향)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • The mechanical properties of WPC(wood plastic composite) should effected with the size of wood particle size and also characteristics of wood particles. In this paper, WPC were prepared with various size of wood particles and coupling agent and the mechanical properties were evaluated. The smaller size of wood particle were used for WPC, the higher properties of WPC in tensile strength and breaking elongation were obtained. The smaller amount of wood particle were used for WPC, the higher properties of WPC in tensile strength and breaking elongation were obtained.

Effect of Compatibilizers on Mechanical Properties of Wood-Plastic Composites Using Styrene Polymers as Matrix Polymers (스티렌계 수지(樹脂)를 매트릭스로 사용한 목재 - 플라스틱 복합체(複合體)의 물성(物性)에 미치는 상용화제(相溶化劑)의 효과(效果))

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.31-37
    • /
    • 1993
  • Composites of styrene polymers with woody fibers were prepared, and the effect of compatibilizers on their mechanical properties was evaluated. To improve the compatibility of wood fibers and the matrix polymers, styrene-maleic anhydride copolymer(SMA) and maleic anhydride-modified polymers were used as compatibilizers. As results, maleic anhydride-modified polystyrene and SMA were proved to improve the tensile strength of the molded composites, and also were evaluated as good compatibilizers for the wood fiber polystyrene composite. Cellulosic fiber (dissolving pulp) provided better reinforcement than lignocellulosic fiber(thermomechanical pulp). On the contrary in the case of the composite of wood fiber and acrylonitrile-butadiene styrene copolymer(ABS), SMA and maleic anhydride-modified acrylonitrile-butadiene-styrene copolymer(MABS) did not act as compatibilizers. However, MABS was evaluated as a good polymer matrix to make wood fiber reinforced composite. The tensile properties of the composites of wood fiber and MABS were superior than those of wood fiber-ABS composites.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

Properties of WPC with Chemical Modified Wood Particles (가소화 처리 목편으로부터 재조된 복합재료의 물성)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • Wood composite, could generally be made from very fine wood powder(<150 mesh) because more large size of wood particle had much less plasticity compared of polymer. To make more high plasticity of relatively large size of wood particle, wood particles were chemically modified with some reagent for acetylation and esterification, etc. WPC(wood plastic composite) was prepared with chemically modified wood particles and the mechanical properties of WPC were evaluated. WPC of esterified wood with maleic anhydride shows the highest level in tensile strength and breaking elongation.