• Title/Summary/Keyword: 연속체모델

Search Result 225, Processing Time 0.021 seconds

무한차원 상공간에서의 디리클레 형식과 확산과정

  • 박용문;유현재
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.691-725
    • /
    • 1998
  • 무한차원 상공간에서의 디리클레 형식과 이에 관계된 확산과정에 대한 일반 이론을 소개하고, 이 이론을 물리학의 통계역학 모델에 적용하였다. 구체적으로, 고전 비유계 스핀계에 대한 통계역학적인 모델, 연속체 공간에서 상호 작용하는 무한 입자계에 대한 통계역학적인 모델에 응용하였다. 아울러서 확률 미분 방정식과 같은 디리클레 형식에 관련된 연구분야에 대해서도 간단히 알아보았다.

  • PDF

Elasto-Plastic Anisotropic-Damage Model for Concrete (콘크리트의 탄-소성 이방성-손상 모델)

  • 이기성;송하원
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • The initiation and growth of microcracks or microvoids inside concrete results in the progressive degradation of concrete. This damage processing along processing along with plastic deformation is main cause of nonlinear behavior of concrete. In this study, a continuum damage model of concrete is developed for the analysis of the nonlinear behavior of concrete due to damage and elasto-plastic deformation. Anisotropic damage tensor is used to describe the anisotropy of concrete and hypothesis of equivalent elastic energy is used to define the effective elastic tensor. The damage model including the damage evolution law and constitutive equation is derived with damage variable and damage surface which is defined by damage energy release rate by using the Helmholtz free energy and dissipation potential based on the thermodynamic principles. By adopting a typical plasticity model of concrete, plasticity of concrete is included to this model. Afinite element analysis program implemented with this model was developed and finite element analysis was performed for the analyses of concrete subjected to uniaxial and biaxial loadings. Comparison of the results of analysis with those of experiments and other models shows that the model successfully predicts the nonlinear behavior of concrete.

  • PDF

A Study on Optimal Earth-Moon Transfer Orbit Design Using Mixed Impulsive and Continuous Thrust (순간 및 연속 추력을 이용한 지구-달 최적 전이궤도 설계에 관한 연구)

  • No, Tae-Soo;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.684-692
    • /
    • 2010
  • Based on the planar restricted three body problem formulation, optimized trajectories for the Earth-Moon transfer are obtained. Mixed impulsive and continuous thrust are assumed to be used, respectively, during the Earth departure and Earth-Moon transfer/Moon capture phases. The continuous, dynamic trajectory optimization problem is reformulated in the form of discrete optimization problem by using the method of direct transcription and collocation, and then is solved using the nonlinear programming software. Representative results show that the shape of optimized trajectory near the Earth departure and the Moon capture phases is dependent upon the relative weight between the impulsive and the continuous thrust.

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

A Study on the Groundwater Flow in Fractured-Porous Media by Flow Resistance Theory (단열-다공암반에서 유동저항 이론을 이용한 지하수 유동 평가에 관한 연구)

  • Han Ji-Woong;Hwang Yong-Soo;Kang Chul-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.231-238
    • /
    • 2005
  • On the basis of flow resistance theory the conceptual model and related mathematical descriptions is proposed for resistance modeling of groundwater flow in CPM(continuum Porous medium), DFN(discrete fracture network) and fractured-porous medium. The proposed model is developed on the basis of finite volume method assuming steady-state, constant density groundwater flow. The basic approach of the method is to evaluate inter-block flow resistance values for a staggered grid arrangement, i.e. fluxes are stored at cell walls and scalars at cell centers. The balance of forces, i.e. the Darcy law, is utilized for each control volume centered around the point where the velocity component is stored. The transmissivity (or permeability) at the interface is assumed to be the harmonic average of neighboring blocks. Flow resistance theory was utilized to relate the fluxes between the grid blocks with residual pressures. The flow within porous medium is described by three dimensional equations and that within an individual fracture is described by a two dimensional equivalent of the flow equations for a porous medium. Newly proposed models would contribute to develop flow simulation techniques with various matrix characteristics.

  • PDF

Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect (이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • This study proposes a finite element analysis method that can analyze the vibration of a beam by considering the inertia effect of moving masses in a vertical direction. The proposed method is effective when a precise interaction analysis is not required. The inertial effects of the moving masses are included in the equation of motion, and the interaction forces between the masses and the beam are considered only as external loads. Time domain analyses were performed using Abaqus, a general-purpose finite element analysis software, and an implementation method using multi-point constraints wais presented to link the displacements of the beam element nodes and moving rigid masses. The proposed method was verified by comparing its solution with that obtained using an existing analytical method, and the analysis results for continuous beam vibrations under dynamic gait loadings were used to examine the mass effect of pedestrians.

Model on the Elastic Deflection of Temple of the Spectacle Frame (안경테 다리의 탄성변형에 관한 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Differential equations and their solutions were formulated to describe the deflection of the tapered, nonuniform thickness and width's temple, clamped at one end while the perpendicular force is acting on the other end which is freely suspended. The model was derived based on laws of continuity at every point inside the elastic medium that the deflection, tangent slope, bending moment, shearing force must be continuous within the medium. The model is found to be in good agreement with measurements on the beta titanium temple with the correlation 0.992 and p=0.999(Chi test). Therefore it is possible to predict the effect of various temple parameters such as elastic modulus, thickness, width on the deflection of the temples being considered.

  • PDF

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

A Study on the Speech Recognition For the Voice Dialing System (Voice Dialing System을 위한 음성인식)

  • 이성권
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.365-368
    • /
    • 1998
  • 본 연구는 음소 단위의 CHMM(Continuous Hidden Markov Model)을 이용한 Voice Dialing System을 위한 연속 음성인식에 관한 내용이다. 연구실 환경에서 음성으로 전화를 걸기 위하여 전국 지역명과 연속 숫자음 인식을 수행하였다. ETRI 445 데이터를 사용하여 초기의 모델은 ML(Maximum Likelihood) 추정법을 이용하여 작성하였고 적응화를 위해 최대 사후 확률 추정법을 사용하였다. 음성으로 다이얼링을 수행하기 위하여 문맥자유문법을 이용하여 제한적이나마 대화체문장으로 수행할 수 있도록 하였다. 그리하여 숫자음에 대하여 5인의 화자에 대하여 4연속 숫자음에 대하여 96%의 인식률을 보이고 있으며 7연속 숫자음에 대하여도 약 91%의 결과를 보여주고 있다. 문장으로도 음성 다이얼링을 수행하였을 경우 문장내에 단어와 숫자음에 대하여 약 80%의 인식률을 보였다.

  • PDF

Boundary element analysis of singular stresses at interface edge of infinitely layered structure (무한 적층 구조체의 자유경계면에 나타나는 특이응력의 경계요소해석)

  • 이상순
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.75-78
    • /
    • 1995
  • The boundary element analysis has been attempted for investigating the singular stress at the interface edge of infinitely layered structure. The subdomain technique has been employed and the analysis model has been divided into two subdomains, which are respectively homogeneous elastic zones. The boundary element equation has been formulated using the equilibrium and continuity conditions at the common interface. The numerical results of example problem has been presented.

  • PDF