• Title/Summary/Keyword: 연속운전

Search Result 480, Processing Time 0.028 seconds

An Operation Simulation of MAGLEV using DEVS Formalism Considering Traffic Wave (승객 유동을 고려한 DEVS 기반 자기부상열차 운행 시뮬레이션)

  • Cha, Moo-Hyun;Lee, Jai-Kyung;Beak, Jin-Gi
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.89-100
    • /
    • 2011
  • The MAGLEV (Magnetically Levitated Vehicle) system, which is under commercialization as a new transportation system in Korea, is operated by means of unmanned automatic control system. Therefore the plan of train operation should be carefully established and validated in advance. In general, when making the train operation plan, the statistically predicted traffic data is used. However, traffic wave can occur when real train service is operated, and the demand-driven simulation technology is required to review train operation plans and service qualities considering traffic wave. This paper presents a method and model to simulate the MAGLEV's operation considering continuous demand changes. For this purpose, we employed the discrete event model which is suitable for modeling the behavior of railway passenger transportation, and modeled the system hierarchically using DEVS (Discrete Event System Specification) formalism. In addition, through the implementation and experiment using DEVSim++ simulation environment, we tested the feasibility of the proposed model and it is also verified that our demand-driven simulation technology could be used for the prior review of the train operation plans and strategies.

Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor (축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • In this study, algae cultivation using the photobioreactor has been applied to remove the nitrogen and phosphorus compounds in the wastewater of the livestock industry. The optimal ratio of nitrate and ortho-phosphate concentration was found for the enhancement of removal efficiency. To achieve the high density culture of algae, the photobioreactor consisted of optical fibers wes developed to get the sufficient light intensity. The light could be illuminated uniformly from light source to the entire reactor by the optical fibers. The structured kinetic model was proposed to describe the growth rate, consumption rate of nitrates and ortho-phosphates in algae culture. The self-organizing fuzzy logic controller incorporated with genetic algorithm was constructed to control the semi-continuous wastewater treatment system. The proposed fuzzy logic controller was applied to maintain the nitrated concentration at the given set-point with the control of wastewater feeding rate. The experimental results showed that the self-organizing fuzzy logic controller could keep the nitrate concentration and enhance algae growth.

  • PDF

A Novel Fault Detection Method of Open-Fault in NPC Inverter System (NPC 인버터의 개방성 고장에 대한 새로운 고장 검출 방법)

  • Lee, Jae-Chul;Kim, Tae-Jin;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • In this paper, a novel fault detection method for fault tolerant control is proposed when the NPC inverter has a open failure in the switching device. The open fault of switching device is detected by checking the variation of a leg-voltage in the neutral-point-clamped inverter and the two phases control method is used for continuously balance the three phases voltage to the load. It can be achieve the fault tolerant control for improving the reliability of the NPC inverter by the fault detection and reconfiguration. This method has fast detection ability and a simple realization for fault detection, compared with a conventional method. Also, this fast detection ability improved the harmful effects such as DC-link voltage unbalance and overstress to other switching devices from a delay of fault detection. The proposed method has been verified by simulation and experiment.

The Study on 2 Liquid Separation Characteristics of H2SO4-HI-H2O-I2 System (I) (H2SO4-HI-H2O-I2계의 2 액상 분리특성에 관한 연구(I))

  • Lee, Tae-Cheon;Jeong, Heon-Do;Kim, Tae-Hwan;Bae, Gi-Gwang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.848-852
    • /
    • 2005
  • The two important problems to solve before the industrialization of the iodine-sulfur (IS) process are (i) methods to separate $H_2SO_4$ and HI and (ii) to maintain constant components. However undesired reaction was occurred and $H_2S$ and S were formed during the Bunsen reaction. It is necessary to forbid the undesired reaction between $H_2SO_4$ and HI by separating the two acids into two different layers. The experimental conditions for the present study was chosen in such a way that to achieve the separation between the two acids and minimize the side reaction. $H_2S$ formation was reduced and the separations of the two liquids were occurred at $H_2O$ molar fraction from 0.86 to 0.909. But the separations between the two liquids were not occurred at $H_2O$ molar fraction more than 0.92.

Characteristics of Sulfur-Solidified Materials by the Physical Properties of Coal Bottom Ash (석탄 바닥재의 물리적 성질에 따른 유황 고형화 성형물의 특성)

  • Hong, Bumui;Choi, Changsik;Jang, Eunsuk;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • In this work, we constructed the sulfur-solidified materials using coal bottom ash from four thermal power stations in Korea and investigated their practical data for the production of industrial construction compounds. To manufacture the sulfur-solidified materials, we used a continuous mixer with the uniaxial screw-type. Also, coal bottom ash was used as a fine aggregate below 1.2 mm because of the operation characteristics for the continuous mixer. When the sulfur-solidified materials were produced with diverse sulfur concentrations (15, 20, 25, 30 wt%), compressive strength properties were analyzed. In addition, when the coal bottom ash was used with a high calcium oxide content, crack was found in the test product and pH of submerged liquid was above 12. These experimental results could be effectively applied to the recycling technology of coal bottom ash.

[Retracted]Cyber Threat Analysis on Network Communication in Power System and Countermeasures Suggestions ([논문철회]전력계통 네트워크 통신방식 변화에 따른 사이버위협 분석 및 대응방안 제시)

  • Il Hwan Ji;Seungho Jeon;Jung Taek Seo
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.91-102
    • /
    • 2023
  • The Energy Management System (EMS) communicates with power plants and substations, monitors the substations and plant operational status of the transmission and substation system for stability, continuity, real-time, and economy of power supply, and controls power plants and substations. Currently, the power exchange EMS communicates with power plants and substations based on the serial communication-based Distributed Network Protocol (DNP) 3.0 protocol. However, problems such as the difficulty of supply and demand of serial communication equipment and the lack of installation space for serial ports and modems are raised due to the continuous increase in new facilities to perform communication, including renewable power generation facilities. Therefore, this paper presents a TCP/IP-based communication method instead of the existing serial communication method of the power exchange EMS, and presents a security risk analysis that may occur due to changes in the communication method and a countermeasure to the security risk.

Two-Dimensional Nanomaterials Used as Fillers in Mixed-Matrix Membranes for Effective CO2 Separation (효과적인 CO2 분리를 위한 혼합 기질 분리막 충진 소재로서의 2차원 나노물질)

  • Khirul Md Akhte;Hobin Jee;Euntae Yang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.155-181
    • /
    • 2024
  • In recent years, significant research has been conducted to enhance the performance of existing membranes for efficient CO2 capture, aiming to expand their application in carbon capture processes. Membrane technology has emerged as a promising carbon capture approach to addressing the net-zero challenge due to its cost and energy efficiency, continuous operation, and compact process size. Among the various types of membranes studied, mixed-matrix membranes (MMMs) have been proposed as an alternative to conventional membranes to enhance the efficiency of gas separation processes. Various common 2D nanomaterials, characterized by their ease of modification, functionalization, and compatibility with other materials, have been used to create efficient MMMs for gas separation. This article comprehensively reviews the recent developments in MMMs using 2D nanomaterials. It also discusses the current challenges and prospects of 2D nanomaterial-based membranes for CO2 separation and capture.

A Study on Optimal Packing Volume of Media in Swirl Flow Biological Fluidized Bed (선회류 생물학적 유동상의 최적 메디아 충전량에 관한 연구)

  • Choi, Doo-Hyoung;Kim, Hwan-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.331-340
    • /
    • 2000
  • The existing two-phase biological fluidized bed has some problems such as limit of oxygen transfer and blockade of fluidized distributor. In this study, three-phase swirl flow biological fluidized bed has designed to solve the problems and to investigate its running characteristics. TOC of influent synthetic wastewater was approximately $70mg/{\ell}$. HRT of reactor was 1.6 hours. Mean particle size of sand, as packing media, was 0.397mm and packing volume was varied from $200m{\ell}/{\ell}$ to $600m{\ell}/{\ell}$ by stages in the bed. The amount of biomass and effluent water quality was throughly investigated in the bed. Showing experiment results from the above conditions, it was possible to solve the problems of existing fluidized bed and to keep DO of $3mg/{\ell}$ or more. And it was also TOC removal rate of 91 to 94 %, MLVSS of 2,360 to $3,860mg/{\ell}$, MLVSS per g-media of 8.4 to 17.3 mg/g, F/M ratio of 0.59 to $1.04kg-TOC/kg-MLVSS{\cdot}day$, biofilm thickness of $35{\sim}71{\mu}m$ and sludge productivity of 1.03 to $2.35kg-SS/m^3{\cdot}day$. Optimal conditions in this experimental were as follows.; those were biofilm thickness of approximately $54{\mu}m$. MLVSS per g-media of 13 mg and media packing volume of 350 to $400m{\ell}/{\ell}$ when F/M ratio was low, treatment efficiency was high and sludge productivity was low. Showing the media with optics microscope in this optimal condition, attached microbes such as Epistylis sp. were observed. From SEM photographs, it showed that Coccus adhere to and grow on the media surface.

  • PDF

A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation (Methane으로부터 13C 동위원소 분리를 위한 회분식 및 연속식 극저온 증류공정모사 비교 연구)

  • Kim, Jong Hwan;Lee, Doug Hyung;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.57-66
    • /
    • 2007
  • Natural gases generally consist of mainly $^{12}C$ and about 1.1% of $^{13}C$. It is well known that a stable carbon isotope, $^{13}C$, has been widely used for the applications of medical, pharmaceutical, and agricultural tracers. As a result, the development of the separation and concentrating technology of $^{13}C$ can cause of high value-added products and the possibility of the generation of new carbon materials, In general, there are two kinds of approaches to obtain a stable $^{13}C$ isotope by the separation of cryogenic distillation. One is to obtain a concentrated $^{13}CH_4$ isotope from natural gas. Another approach is to get concentrated $^{13}CO$ by distillation followed by a chemical reaction of $CH_4$ and $H_2O$. In this study, rigorous process simulations of the cryogenic distillation have been performed and analyzed for the concentrated separation of $^{13}C$ isotopes from LNG and NG by using commercial process simulator. Due to the very small differences of relative volatilities and separabilities of $^{12}C$ and $^{13}C$, the process design and operation of effective separation and concentration of $^{13}C$ need special strategies and feasibility studies. Utilization of vapor pressure data to acentric factor in SRK equation of state and optimized process conditions have been able to predict for the effective of the separation yield and concentration of $^{13}C$ for the cryogenic distillation. The various operation strategies for both batch and continuous cryogenic distillation are also studied and suggested for the basic design of the process. Development of this study can provide a tool for the effective design and operation of the cryogenic separation of $^{13}C$.

Simultaneous Treatment of Carbon Dioxide and Ammonia by Microalgal Culture (조류배양을 통한 이산화탄소 및 암모니아의 동시처리)

  • ;;Bohumil Volesky
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.328-336
    • /
    • 1999
  • A green microalga, Chlorella vulgaris UTX 259, was cultivated in a bench-scale raceway pond. During the culture, 15%(v/v) $CO_2$ was supplied and industrial wastewater discharged from a steel-making plant was used as a culture medium. In a small scale culture bottle, the microalga grew up to 1.8 g $dm^{-3}$ of cell concentration and ammonia was completely removed from the wastewater with an yield coefficient of 25.7 g dry cell weight $g^{-1}\;NH_3-N$. During the bottle-culture, microalga was dominant over heterotrophic microorganisms in the culture medium. Therefore, the amount of carbon dioxide fixation could be estimated from the change of dry cell weight. In a semi-continuous operation of raceway pond with intermittent lighting (12 h light and 12 h dark), increase of dilution rate resulted in increase of the ammonia removal rate as well as the $CO_2$ fixation rate but the ammonia removal efficiency decreased. Ammonia was not completely removed from the medium (wastewater) of raceway pond which was operated in a batch mode under a light intensity up to 20 klux. The incomplete removal of ammonia was believed due to insufficient light supply. A mathematical model, capable of predicting experimental data, was developed in order to simulate the performance of the raceway pond under the light intensity of sun during a bright daytime. Simulation results showed that the rates of $CO_2$ fixation and ammonia removal could be enhanced by increasing light intensity. According to the simulation, 80 mg $dm^{-3}$ of ammonia in the medium could be completely removed if the light intensity was over 60 klux with a continuous lighting. Under the optimal operating condition determined by the simulation, the rates of carbon dioxide fixation and ammonia removal in the outdoor operation of raceway pond were estimated as high as $24.7 g m^{-2} day^{-1}$ and $0.52 g NH_3-N m^{-2} day^{-1}$, respectively.

  • PDF