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1. Introduction1)

Carbon dioxide (CO2) is the primary component of greenhouse gases 
released into the atmosphere and is a critical global issue in modern 
times. The accumulation of CO2 in the atmosphere contributes to glob-
al warming by trapping heat that would otherwise escape from the 
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Earth's surface[1]. This phenomenon has led to rising sea levels and 
intensified global warming, posing major concerns for climate change, 
including significant threats to global food security, human health, and 
economies[2-5]. Carbon dioxide is the primary driver of global warm-
ing due to its environmental accumulation[6]. According to the 
International Energy Agency 2023 report, global CO2 emissions have 
reached an unprecedented 37.4 billion metric tons. The National 
Oceanic and Atmospheric Administration of the United States and the 
World Meteorological Organization have identified 2023 as the warm-
est year since global records began in 1850. Carbon capture and stor-
age technologies have gained prominence, which efficiently reduce at-
mospheric CO2 levels and substantially mitigate the greenhouse effect 
[4]. Various technologies are currently employed for CO2 removal, in-
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초    록

최근, 기존 분리막의 성능을 향상시켜 CO2 분리를 효율적으로 수행하기 위한 중요한 연구가 진행되고 있다. 이는 탄소 
포집 공정에서의 활용을 확대하는 것을 목표로 하고 있다. 분리막 기술은 비용 및 에너지 효율성, 연속 운전, 작은 
공정 크기 등의 장점으로 인해 탄소제로 이슈에 대처하는 유망한 탄소 포집 기술로 부상하고 있다. 연구된 여러 종류
의 분리막 중 혼합기질막(mixed-matrix membrane, MMM)이 전반적인 가스 분리 공정의 효율을 향상시킬 수 있는 전통
적인 분리막의 대안으로 제안되었다. 2D 나노소재는 쉬운 개질과 기능화, 다른 재료와의 결합 등 특징적인 성질로 
인해 다양한 일반적인 2D 나노소재들이 가스 분리를 위한 효율적인 MMMs 제작에 사용되고 있다. 본 논문은 2D 나노
소재를 사용한 MMMs 분야의 최근 발전을 검토하였다. 또한, CO2 분리 및 포집을 위한 2D 나노소재 기반 분리막의 
현재 도전과 전망을 논의하였다. 
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cluding oxyfuel combustion and pre- and post-combustion processes 
[7]. Among the prevalent CO2 capture technologies are cryogenic dis-
tillation, chemical absorption, chemisorption, condensation, pressure 
and temperature swing adsorption, and membrane separation[8-14].

Among those technologies, membrane-based CO2 capture offers 
cost-effectiveness, energy efficiency, continuous operation, compact 
size, and ease of process fabrication[15-18]. Currently, inorganic and 
polymeric membranes are employed for membrane-based gas separa-
tion processes[19-33]. Inorganic membranes are noted for their thermal 
and chemical stability, high permeability, and long life. However, their 
widespread use is limited by challenges such as complex membrane 
fabrication, higher costs, and processing difficulties[34]. On the other 
hand, although polymeric membranes are cost-effective, they lack suffi-
cient mechanical and chemical durability for practical applications. 
Additionally, they are constrained by Robeson's upper bound, which 
limits the selectivity and permeability of the materials[34]. 

Consequently, researchers continue to explore the development of 
novel membranes for gas separation, aiming to overcome the limi-
tations of inorganic and polymeric membranes. There has been a recent 
increase in interest in relatively facile novel membrane fabrication 
strategies that incorporate nanomaterials with excellent phys-
icochemical properties into polymer matrices[35]. This results in 
mixed-matrix membranes (MMMs), which are heterogeneous mem-
branes formed by interacting with polymer matrices and inorganic 
fillers. The excellent physicochemical properties of nanofillers and the 
interaction between inorganic nanofillers and polymers prevent the 
clumping of particles, clogging of pores, the formation of void spaces, 
and the hardening of the polymer during the manufacturing of MMMs, 
thereby enhancing gas separation efficiency[36]. As shown in Table 1, 
MMMs demonstrate outstanding characteristics compared to conven-
tional membranes.

Advancements in nanotechnology have spurred significant interest 
and rapid development in MMMs. Based on the size of filler materials, 
they can be categorized into several types: 0D, 1D, 2D, and 3D materi-
als, etc.[37]. Among these nanofillers, 2D materials have been ex-
tensively employed to develop high-performance MMMs thanks to 
their high aspect ratio, distinctive sub-nanoscale thickness, and slight 
lateral dimensions.[38]. A diverse range of 2D materials, such as gra-
phene and its derivatives (e.g., graphene oxide (GO)), MXene, met-
al-organic frameworks (MOFs), graphitic carbon nitride (g-C3N4), lay-
ered double hydroxides (LDH), covalent organic frameworks (COFs), 

Figure 1. 2D composite membrane materials diagram. Reprint permission 
from reference [38], Copyright 2023, Elsevier.

hydrogen-bonded organic frameworks (HOFs), transition metal dichal-
cogenides (TMD), and clays have been utilized to develop high-per-
formance MMMs (Figure 1)[39-53]. 

In this review, we conducted a comprehensive study of MMMs 
based on 2D materials for CO2 capture. First, we discussed the 2D ma-
terials applied in MMMs for CO2 capture. We then categorized and re-
viewed the research on MMMs according to the types of 2D materials 
used, evaluating the performance of existing 2D material-based MMMs. 
Finally, we discussed the current challenges and future developments 
in using 2D nanomaterial membranes for carbon capture.

2. Milestones in the development of 
2D-material-based MMMs

Table 2 illustrates the research timeline for advancing 2D-materi-
al-based membranes[38]. The development of MMMs incorporating 2D 
materials for gas separation has seen significant advancements over the 
years. This section presents an overview of the critical milestones in 
developing various 2D-material-based MMMs, highlighting their 
unique compositions and the advancements achieved from 2014 to 2023.

In 2014, the initial efforts to incorporate 2D materials into MMMs 
began with the development of ZIF-8 incorporated tert-butylpolybenzi-
midazole (ZIF-8@PBI-BUI) MMMs and NiAl-CO3 LDH membranes. 
These early studies laid the groundwork for further exploration of 2D 
material applications in gas separation membranes. By 2015, researchers 
had successfully developed  polyethylene glycol and polyethyleneimine- 
modifed GO (PEG-PEI/GO) MMMs and ZIF-8-ZnAl-NO3 LDH MMMs. 

Properties 
membranes

Chemical and 
thermal 
stability

Synthesis and 
processability

Fabrication 
cost

Plasticization 
effect

Resistant to 
pressure

Mechanical 
strength

Gas separation 
performance

MMMs High Easy Moderate Partially control High Excellent Above the Robeson’s 
upper bound

Polymeric 
membranes Moderate Easy Low Susceptible Moderate Good Below the Robeson’s 

upper bound

Inorganic 
membranes High Difficult High No effect High Poor Above the Robeson’s 

upper bound

Table 1. Comparison of MMMs with Other Conventional Membranes[54]
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These membranes demonstrated the potential of integrating GO and 
LDH materials to improve gas separation performance. The year 2016 
saw the development of MoS2/Pebax MMMs, marking a significant 
step forward in utilizing TMDs for MMMs. This innovation showcased 
the potential of MoS2 as a filler material to enhance membrane 
properties. 

In 2017, the focus shifted towards developing GO-PEGDA MMMs 
and NH2-ZIF-8/PA MMMs. These membranes further highlighted the 
versatility of GO and MOFs in creating efficient gas separation 
membranes. The advancements continued in 2018 with the creation of 
GO/PEI MMMs, PVAm/PEI-g-ZIF-8 MMMs, and amine-functionalized 
MXene/PEI MMMs. This year also saw the introduction of WS2/IL 
supported ionic liquid membranes (SILMs) and ZIF-8@LDH/Pebax 
MMMs, expanding the range of 2D materials used in MMMs. By 
2019, researchers had developed sulfonated poly(ether ether ketone)/ 
sulfonated polymer brush functionalized graphene oxide (SPEEK/S-GO) 

MMMs, polyvinyl acohol/polyvinyl amin-zeolitic imidazolate framework-L 
(PVA/PVAm-ZIF-L) membranes, Chitosan-g-C3N4/zeolitic imidazolate 
framework-8 (CS-g-C3N4/ZIF-8) MMMs, and GO/COF MMMs. These 
innovations demonstrated the continued interest in exploring 2D mate-
rials for MMM applications. 

In 2020, significant progress was made with the development of 
ZIF-8@GO/Pebax-1657 MMMs, PEI-ZIF-8/Pebax MMMs, g-C3N4/Pebax 
MMMs, COFs/PVAm MMMs, and MXene/Pebax-1657 MMMs. These 
membranes showcased the potential of combining different 2D materi-
als to enhance gas separation efficiency. The year 2021 saw the in-
troduction of PVAm/ZIF-8-decorated metakaolin (PVAm/ZIF-8-d-MK) 
MMMs, GO-modified-g-C3N4 MMMs, Pebax-PEG@COF MMMs, and 
MXene hollow fiber membranes. These developments highlighted on-
going innovation in creating more efficient gas separation membranes. 
In 2022, researchers developed ZIF-8/GO MMMs, ZIF-8@poly-
acrylonitrile/poly ethylene oxide (ZIF-8@PAN/PEO) MMMs, intrinsi-

Development 
year

GO 
composite 
membrane

MOF 
composite 
membrane

g-C3N4 
composite 
membrane

COF 
composite 
membrane

MXene 
composite 
membrane

TMD 
composite 
membrane

LDH 
composite 
membrane

2023 GO-melamine 
composite

a) PBE/MOF-808 
MMMs

g-C3N4-GOx/
Pebax-1657

MMMs

b) TPB-DMTP-COF 
and IL@COF

c) MXene@CNF 
membranes - -

2022
d) ZIF-8/GO 

MMMs
e) ZIF-8@PAN/

PEO MMMs 
f) PIM-1/g-C3N4 

MMMs 

g) PVAm/ZIF- 
8@NENP-NH2 

MMMs

h) MXene/
PEI 

MMMs 

i) Cys-MoS2/
Pebax 

MMMs

CoNi-LDH/ 
Pebax 

MMMs

2021 -
j) PVAm/

ZIF-8-d-MK 
MMMs 

GO-modified-g- 
C3N4 MMMs

k) Pebax- 
PEG@COF MMMs

MXene hollow 
fiber membrane - -

2020
ZIF-8@GO/
Pebax-1657 

MMMs

PEI-ZIF-8/Pebax 
MMMs

g-C3N4/Pebax 
MMMs

COFs/
PVAm MMMs

MXene/
Pebax-1657 

MMMs 
- -

2019
l) SPEEK/S-GO 

MMMs

m) PVA/PVAm-
ZIF-L 

membranes

n) CS-g-C3N4/
ZIF-8 

MMMs
GO/COF MMMs - - -

2018 GO/PEI MMMs PVAm/PEI-g-ZIF-8 
MMMs - -

Amine 
functionalized 
MXene /PEI 

MMMs

WS2/IL SILMs
ZIF-8@LDH/ 

Pebax 
MMMs

2017
o) GO-PEGDA 

MMMs
p) NH2-ZIF-8/
PA MMMs - - - - -

2016 - - - - - MoS2/Pebax 
MMMs -

2015 PEG-PEI/GO 
MMMs - - - - -

ZIF-8-ZnAl- 
NO3 LDH 

MMMs

2014 -
q) ZIF-8@PBI-BUI 

MMMs - - - -
NiAl-CO3 

LDH 
membrane 

a) Poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-co-poly(oxyethylene methacrylate) (PBE); b) triphenylbenzene (TPB), dimethoxyterephthaldehyde
(DMTP); c) cellulose nanofiber (CNF); d) zeolitic imidazolate framework (ZIF); e) polyacrylonitrile (PAN), polyethylene oxide (PEO); f) polymers of intrinsic 
microporosity (PIM); g) polyvinylamine (PVAm), nitrogen-rich nanoporous polytriazine (NENP); h) polyethyleneimine (PEI); i) l-cysteine functionalized MoS2

(Cys-MoS2); j) metakaolin (MK); k) polyethylene glycol (PEG); l) sulfonated polyether ether ketone (SPEEK); m) poly (vinyl alcohol) (PVA); n) chitosan (CS); o) 
polyethylene glycol diacrylate (PEGDA); p) polyamide (PA); q) tert-butylpolybenzimidazole (PBI-BUI)

Table 2. Timeline for the Advancement of 2D Nanomaterial-Based Membranes (Adopted from the Reference [38])
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cally microporous polymer/g-C3N4 (PIM-1/g-C3N4) MMMs, PVAm/ZIF-8 
@nitrogen-enriched nanoporous polytriazine (PVAm/ZIF-8@ NENP-NH2) 
MMMs, MXene/PEI MMMs, L-cysteine-functionalized MoS2/Pebax 
(Cys-MoS2/Pebax) MMMs, and CoNi-LDH/Pebax MMMs. These 
membranes further underscored the diverse applications of 2D materi-
als in MMMs. 

Finally, in 2023, several cutting-edge MMMs were introduced, in-
cluding GO-melamine composites, poly(2-[3-(2H-benzotriazol-2-yl)-4- 
hydroxyphenyl] ethyl methacrylate)-co-poly(oxyethylene methacrylate)/ 
MOF-808 (PBE/MOF-808) MMMs, g-C3N4-GOx/Pabax-1657 MMMs, 
triphenylbenzene–dimethoxyterephthaldehyde-COF (TPB-DMTP-COF) and 
ionic liquid@COF (IL@COF) MMMs, and MXene@cellulose nanofiber 
(MXene@CNF) membranes. These innovations represent the latest ad-
vancements in the field, showcasing the ongoing evolution and potential 
of 2D-material-based MMMs for gas separation.

3. 2D nanomaterials employed as fillers for gas 
separation MMMs 

3.1. Properties of 2D materials as fillers for gas separation MMMs
Table 3 demonstrates the merits of various 2D materials used as fill-

ers in MMMs for gas separation. The merits of 2D materials in 
MMMs originate from the following properties. Various 2D nano-
materials are categorized into porous and non-porous types based on 
their void structure. Common 2D non-porous materials include TMDs, 
LDHs, MXenes, and GO[9,23,39,52,55]. These materials are frequently 
utilized in gas separation membranes due to their atomic-layer thick-
ness, facile fabrication process, and significant specific surface area[23, 
38]. However, the primary characteristic of most 2D non-porous mate-
rials is their impervious surface, which complicates gas transport[38]. 
Molecular structures such as TMD, MXene, and GO are employed as 
single-atomic layer-thickness basic nanosheets, which obstruct the flow 
of gas molecules due to their large lateral dimensions[9,23,39,52]. 
Consequently, smaller gas molecules can permeate through the inter-
layers or flaws in the nanosheets[38].

When using materials like these as fillers, it is crucial to consider 
both the dimensions of the interlayer channels and the obstructive im-
pact of the substance. On the other hand, 2D porous materials such as 
g-C3N4, COFs, and MOFs show higher potential for use in composite 
membranes as fillers[46,49,41,56]. Modifying the size of the micro-
pores in the 2D porous materials can serve as efficient pathways for 
small gas molecules while maintaining gas selectivity[38]. After mem-
brane development, gas molecules can flow through the 2D nano-
channels and natural holes on the membrane, which can also function 
as mechanisms for gas transport[46,49,51].

With their numerous surface functional groups, MOFs can facilitate 
gas diffusion by leveraging interaction forces[49,56]. Gas separation 
membranes benefit from COFs due to their remarkable crystallinity, 
substantial specific surface area, enduring porosity, and exceptional 
thermal resistance[46,57]. 

3.2. Synthesis of 2D materials
There are two primary approaches for synthesizing 2D materials: 

top-down and bottom-up. The top-down approach involves removing 
layers from more extensive materials through mechanical or chemical 
processes, while the bottom-up approach constructs materials from mo-
lecular or atomic precursors. The bottom-up method directly creates 2D 
materials using techniques such as templating, interfacial growth, 
chemical vapor deposition (CVD), physical vapor deposition (PVD), 
and topochemical transformations. In contrast, the top-down approach 
produces 2D nanosheets through exfoliation methods, including electro-
chemical exfoliation, freeze-thaw exfoliation, sonication exfoliation, 
mechanical exfoliation, ion-exchange exfoliation, and solvent-assisted 
exfoliation[61-69].

2D nanosheets can be fabricated into membranes using solution cast-
ing, hot dropping, or filtration[70,71]. Both top-down and bottom-up 
approaches offer significant advantages over other methods and have 
been the focus of extensive research due to their effectiveness and 
versatility.

Recent advances in the synthesis of 2D materials for gas separation 

2D material Merits as filler Ref.

GO ∙ 2D nanostructures possessing functional groups that are capable of being modified and combined with other substances
∙ Optimal separation of CO2

[55]

MOFs ∙ Ligand compounds with functionalized, designable, and tunable nanospaces
∙ Preparation of high selectivity and high permeability separation membranes [56]

COFs ∙ COF-5/Pebax membrane was uniform, which is beneficial to the CO2 capture
∙ COF-5/Pebax shows high CO2 uptake capacity. [57]

MXene ∙ Excellent chemical stability, high specific surface area, and environmental compatibility
∙ Composites could be used for air purification [58]

g-C3N4
∙ 2D layered material, capable of synthesizing ultra-thin layered nanochannels with selective loading 
∙ Gas separation membranes with high permeability and different selectivity can be prepared fabrication of ultra-high 

permeability gas separation membranes
[59]

LDH

∙ LDHs into single-layer nanosheets enabled to maximize the surface area, which was favorable for their utilization as 
high-performance separation membranes

∙ LDHs, a representative of anionic clays, have attracted extensive interest and exhibited promising prospects for membrane 
applications

[60]

Table 3. Advantages of 2D Materials in Terms of Fillers for Gas Separation MMMs
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membranes have been widely reviewed, highlighting the emergence of 
new materials such as graphene derivatives, MOFs, COFs, HOFs, 
MXenes, g-C3N4, TMDs, and LDHs. These materials are proving in-
creasingly attractive for enhancing gas separation, presenting promising 
avenues for future research.

3.3. Working principles of 2D materials as fillers in MMMs
The working mechanisms of 2D materials as fillers in MMMs can 

differ based on their distinct characteristics and interactions within the 
polymer matrices. Here are several fundamental principles. To begin 
with, numerous 2D materials feature an atomic-layer thickness, en-
abling precise manipulation of the membrane's structure and attributes. 
This thinness facilitates gas diffusion across the membrane while pre-
serving its selectivity[41].

Next, many 2D materials possess a substantial specific surface area, 
offering abundant active sites for gas adsorption and streamlining gas 
separation processes. In addition, certain 2D materials, particularly po-
rous ones like MOFs and COFs, exhibit well-defined pore structures. 
These pores act as conduits for gas molecules, facilitating efficient gas 
transfer and segregation[49,50].

Also, functionalized 2D materials may carry specific chemical groups 
on their surfaces, capable of interacting with gas molecules through ad-
sorption or chemical reactions. These interactions can enhance gas sep-
aration efficiency by selectively capturing target molecules[38]. 
Furthermore, 2D materials feature adjustable tortuous interlayer gal-
leries between 2D materials in polymer matrices. These interlayer net-
works influence the permeability of gas molecules through the mem-
brane, with shorter interlayer networks promoting faster diffusion[41].

Finally, certain 2D materials like graphene and MXenes demonstrate 
exceptional mechanical strength. When integrated into MMMs, these 
materials can bolster the membrane's structural integrity while preserv-
ing its gas separation efficiency[38]. 

4. Performance assessment of 2D materials-based 
MMMs in CO2 capture

4.1. Graphene-based MMMs
Graphene is a single-atom-thick graphite consisting of a monolayer 

of carbon atoms organized in a 2D configuration. The structure com-
prises a hexagonal carbon network, with every atom forming covalent 
interactions with three adjacent atoms by the sigma bond[72]. 
Graphene and its derivatives have recently gained significant attention 
in gas separation using membrane technology[73-76]. These materials 
are known for their exceptional thermal stability, impressive mechan-
ical strength, chemical inertness, high aspect ratio, large specific sur-
face area, unique 2D structure, and ultra-thin mono-atomic thickness 
[77-81]. Graphene can be synthesized using different methods, like 
top-down and bottom-up directions[82,83]. Graphene is commonly uti-
lized in various forms, such as graphene-based composites, graphene 
laminates, and nano-porous graphene, to separate mixtures of gas and 
individual gas components[77]. 

Table 4 concisely overviews graphene-based MMMs fabricated using 

various polymers and supplements for gas separation. In a study con-
ducted by Lee and coworkers[84], it was found that a membrane made 
of nano-porous graphene can effectively separate CO2 from various gas 
mixtures like CO2/O2, CO2/N2, CO2/CH4, and CO2/H2. Its single-atom 
thickness offers exceptional permeability and selectivity for gas mole-
cules, surpassing other carbon materials. Koenig et al. utilized gra-
phene nanosheets that had carefully engineered nanopores to facilitate 
the permeation of CO2 gas and other gas molecules[85]. He et al. cre-
ated a hybrid membrane by altering a single-layer graphene with 
polyethylenimine. This membrane has a CO2/N2 selectivity of 22.5 and 
a CO2 permeance of 6180 GPU[86]. 

Tian et al. found that when porous graphene was coated with 1-eth-
yl-3-methyl imidazolium tetrafluoroborate ([emim][BF4]) IL, it showed 
a CO2/CH4 selectivity of 40 and CO2 permeance of 105 GPU[87]. Guo 
et al. created a nanoporous graphene membrane modified with 1-bu-
tyl-3-methyl imidazolium tetrafluoroborate ([Bmim][BF4]) IL to sepa-
rate CO2 and N2 gases[88]. The CO2 permeance was enhanced to 4000 
GPU, and the CO2/N2 selectivity was improved to 32 by using a load-
ed IL that allowed for adjustment of the chemical affinity and nano-
pore size. 

GO composites and functional derivatives of graphene are superior 
materials for CO2 separation. GO may be readily manufactured in huge 
quantities and can be processed into laminates. Researchers have ex-
tensively examined GO-composite membranes in recent studies due to 
their enhanced permeability and selectivity for CO2 compared to pris-
tine GO laminates. These membranes have a strong conjugated π sys-
tem, which enhances their selectivity for CO2[89]. Wu et al. created 
MMMs using graphene oxide as a foundation material. The GO was 
modified with PEI and PEG and added to a Pebax material[90]. The 
authors have observed that by implementing this technique, the perme-
ability of CO2 has been measured to be an impressive 1330 Barrer 
while maintaining a selectivity of 120 for CO2/N2 and 45 for CO2/CH4. 
The results indicate that the effectiveness of separating CO2 can be im-
proved by integrating appropriate interconnections of functional groups 
within GO layers. 

Wang et al. fabricated a GO membrane for CO2 separation using the 
vacuum filtration method. The membrane was crosslinked with borate, 
resulting in a CO2 permeability of 650 GPU and CO2/N2 selectivity of 
75[91]. Shen et al. demonstrated the creation of a specialized CO2 
transport Pebax/GO MMM that possesses CO2 transport routes with a 
molecular-sieving structure[75]. This GO membrane achieved a CO2 
permeability of 100 Barrer and CO2/N2 selectivity of 91. Li et al. de-
veloped 0.05 wt% graphene-containing MMMs, which exhibited a 21% 
CO2 permeability increase and a CO2/N2 selectivity increase of 
20.8%[92]. Wang et al. created polyetheramine-grafted graphene oxide 
and utilized it to fabricate Pebax MMMs to separate N2 and CO2 gas-
es[93]. MMMs containing 15 wt% of PEI-grafted graphene oxide had 
the most superior achievement of all the compositions analyzed. 
Specifically, it exhibited a CO2 permeability of 242 and CO2/N2 se-
lectivity of 56. 

Based on the previous discussions, graphene materials are a promis-
ing option for creating MMMs with appropriate polymer matrices. This 
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is due to their extremely thin structure at the atomic level, impressive 
mechanical strength, ability to disperse nicely in polymers, and poten-
tial for selectively transporting molecules of specific sizes through 
nanopores. 

4.2. MOF-based MMMs
MOFs are a structured material comprised of metallic ions and or-

ganic ligands that form a crystalline and porous solid. Research on 
MOFs has explored its potential applications in several fields, such as 
gas storage, sensors, separation, adsorption, catalysis, solar fuel pro-
duction, drug delivery, molecular identification, and anticorrosion coat-
ing on metal surfaces[116,117]. Several synthesis strategies have been 
assessed for the synthesis of MOFs, including sonochemical, mecha-
nochemical, solvothermal, electrochemical, ultrasonic, and micro-
wave-assisted heating[118-121]. 

The researchers were driven to create MOF-based MMMs to en-

hance the characteristics of membranes by integrating materials into a 
polymer matrix. Recently, MOF-based membranes have been widely 
acknowledged as the most efficient materials for gas separation. The 
unique characteristics of this material, such as its rich porosity, low 
density, extensive surface area with a range of 1000 to 10000 m2/g, 
particle size, chemical functionality, dimensions and flexibility in top-
ology, as well as its tiny aperture size, wide range of pore size, and 
chemical and physical properties, make it a preferred choice for vari-
ous gas separation applications compared to alternative porous materi-
als like zeolites, activated carbons and silica[122-127].

Porous MOFs can increase the capacity of gas to pass through a 
dense polymeric matrix[120]. Theoretically, the primary focus is on the 
size of the particles' aperture. By molecular sieving, MOFs can sepa-
rate the molecules in gas. Meanwhile, the filler dimensions are para-
mount in establishing the polymer's available space. Concurrently, the 
nanoparticle structure influences the configuration and dimensions of 

Polymers Filler Loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

Pebax Graphene 4.0 1.0-2.0 25 239.8 95.5 - - [37, 
94]

Matrimid Nitrogen-doped 
Graphene 0.07 1.0 35 10.3 41.1 - - [95]

PIM-1 Few-layer 
graphene 0.001 1.0 25 12700 14.6 12700.0 8.76 [96]

a) PDMS Graphene flakes 0.5 2.0 37 4460 8.1 4460.0 4.20 [97]

PVA Graphene 
nanoplate 1.5 1.0 25 - - 81.4 41.90 [98]

b) PPO Graphene 0.3 1.4 35 62 17.7 - - [99]

Pebax Graphene 0.7 4.0 25 44.78 111.95 - - [100]

Pebax GO 1.0 4.0 25 55.87 120.72 - - [100]

PIM-1 c) APTS-GO - 1.5 25 - - 4850.0 11.00 [101]

Cellulose GO-PEI- Zn2+ 17.0 1.0 25 267 48.9 268.9 57.04 [102]

Pebax d) GO-DA-Zn2+ 1.0 2.0 30 - - 138.0 28.81 [103]

Pebax GO 1.0 3.0 25 94.7 84.37 - - [104]
e) PVDF GO 0.5 5.0 27 0.897 40.63 - - [105]

PEO GO 1.0 10.0 35 280 46.58 - - [106]

Pebax GO 0.8 5.0 25 28.08 GPU 42.55 28.08 GPU 52.57 [107]

Pebax GO 1.0 2.0 30 114.17 69.13 - - [108]

Pebax f) GO-mPD 0.7 4.0 25 29.60 142.9 - - [109]

Pebax g) A-prGO 0.05 4.0 25 49.30 98.60 49.3 22.41 [110]
h) PI GO-NH2 3.0 1.0 25 12.34 38.56 - - [111]

Pebax GO-Silane 0.5 2.0 35 174.00 14.5 174.0 43.50 [112]

Pebax i) GO-Im 0.5 4.0 25 66.40 74.33 66.4 24.43 [113]

SPEEK j) S-GO 8.0 1.0 25 1326.55 86.44 1326.6 72.25 [114]

PIM-1 k) rGO-OA 0.25 2.0 25 - - 6300.0 17.60 [115]
a) Polydimethylsiloxane (PDMS); b) poly(p-phenylene oxide) (PPO); c) (3-aminopropyl)triethoxysilane (APTS); d) dopamine (DA); e) polyvinylidene fluoride (PVDF); 
f) m-phenylenediamine (mPD); g) aminated partially reduced graphene oxide (A-prGO); h) polyimide (PI); i) imidazole functionalized graphene oxide (ImGO); j) 
sulfonated polymer brush functionalized graphene oxide nanosheets (S-GO); k) octylamine (OA)

Table 4. An Overview of the CO2 Separation Performances of Graphene-Based MMMs
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the pore, impacting the system's separation process[129]. The critical 
distinction is in the sheet-shaped MOF's surface area, which enhances 
the interaction between gases and fillers that flow through. These char-
acteristics allow for the obstruction of the flow of unwanted gases 
through MMMs. Various varieties of MOFs have been introduced, and 
their number continues to increase. Recent research has demonstrated 
the successful utilization of well-known MOF structures, including 
ZIF-series, Material of Institute Lavoisier (MIL)-series, University of 
Oslo (UiO)-series, and Hong Kong University of Science and 
Technology (HKUST), in creating MMMs for applications of different 
gas separations (Table 5). The exceptional membrane properties of MOFs 
have been verified through over both computational and experimental 
investigations. MOFs may be utilized for membrane separation in two 
ways: either as fillers or as pure films in polymer matrices to create 
MMMs[130]. Figure 2 shows the 3D structure of various MOFs.

4.2.1. ZIF-based MMMs
ZIFs are a kind of MOFs that have a zeolite-like structure with dif-

ferent pore sizes. ZIFs provide several benefits, including easy syn-
thesis, scalability, affordability, efficient dispersion, eco-friendliness, 
and excellent resistance to hydrothermal conditions[131-133]. ZIFs 
comprise metal nodes linked to imidazole linkers by substituting Si/Al 
atoms with imidazolates and transition metals. The bond angle between 
the linker and metal in ZIFs is also comparable to the zeolites 
Si/Al-O-Al/Si repeating unit[134]. The range of ZIF materials is syn-
thesized by altering the imidazolate linkers and transition metal ions 
(Zn and Co). Some examples of these materials are ZIF-302, ZIF-108, 
ZIF-78, ZIF-71, ZIF-11, ZIF-8 and ZIF-7. ZIFs often include spacious 
internal voids with narrow pore apertures closely matching the size of 
CO2 molecules. This characteristic makes ZIFs appropriate for separat-
ing CO2 as a filler material in MMMs.

Li et al. successfully produced ZIF-7/Pebax composites without de-
fects and obtained a high permeability when the filler loading was 22 
wt%. Furthermore, the selectivity was further enhanced by raising the 
filler proportion to 34%. However, the permeability dropped from 145 
to 41 Barrer due to the increased rigidity of the Pebax chain caused 
by more filler[11]. ZIF-8 fillers have a strong bond with the soft Pebax 

domain, resulting in a 4.32-fold increase in CO2 permeability compared 
to Pebax alone. A permeability of up to 994 Barrer was reached using 
a mixture of 35 wt% ZIF-8 and Pebax. The selectivity of CO2/CH4 and 
CO2/N2 was 9 and 32, respectively[135]. Nordin et al. created MMMs 
by evenly distributing ZIF-8 (0.5%) in a polysulfone (PSf) matrix with 
abundant free space. This led to CO2 penetration and selectivity that 
were 1.37 and 1.19 times higher, respectively, compared to previous 
results[136]. 

Tanh Jeazet et al. did a study on the separation of CO2 using a com-
bination of ZIF-8 and PSf. They found that the selectivity and perme-
ability of gas separation rose by 1.52 and 2.0 times, respectively, after 
increasing the ZIF-8 loading to 8 wt% compared to a PSf membrane 
with a lower ZIF-8 content. Furthermore, the highest level of perme-
ability, about 4.8 times greater, was attained at a concentration of 24 
wt%. The loading and selectivity of ZIF-8 fell to 1.04 due to the 
trade-off in membrane characteristics[137]. Thompson et al. created 
MMMs by modifying the surface of ZIF-8 by combining Matrimid, 
2-aminobenzimidazole, and 2-benzimidazole. The findings demon-
strated that ZIF-8 samples treated with 2-benzimidazole had the highest 
CO2 permeability value of 10 Barrer, with a 4% decrease in CO2/CH4 
selectivity compared to thin polymers[138]. 

Chi et al. examined the properties of styrene-based MMMs by even-
ly distributing ZIF-8 particles of various sizes inside a copolymer ma-
trix of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene 
(SEBS) while preserving the distinct structure of the polymer matrix. 
The findings demonstrated that the CO2 permeability of ZIF-8 with a 
medium size of 240 nm was 2.66 times. Additionally, the selectivity 
of CO2/N2 and CO2/CH4 were 12 and 5.4, correspondingly[139]. 
Nevertheless, IL@ZIF-8 exhibited better gas separation capabilities 
than the highest limit of polymeric membrane performance set by 
Robeson in 2008. The IL@ZIF-8 material has shown exceptional dura-
bility over time and improved CO2 selectivity and permeability over 
standard ZIF-8. Specifically, the CO2 selectivity and permeability val-
ues for CO2/N2 and CO2/CH4 were 64.9, 15.1, and 292 Barrer, corre-
spondingly, which were higher than those of plain ZIF-8[140]. Ban et 
al. created a composite material by incorporating Co-metal into the PSf 
matrix and ZIF 108. ZIF-108 possesses many active sites that can ac-
commodate other metals instead of its own. The Co-doped ZIF-108/PSf 
secondary metal exhibited a CO2 permeability approximately seven 
times greater than the value of ZIF-108/PSf and 17 times greater than 
pure PSf. 

The pore size of the ZIF-108 framework increased with the addition 
of Co metal. As a result, the compatibility between the PSf membrane 
and the fillers was enhanced, leading to increased separation factors 
and CO2 permeability[141]. In the study conducted by Nafisi and 
H¨agg[135], ZIF-8 was permeated into 2,2ʹ-bis(3,4ʹ-dicarboxyphenyl) 
hexafluoropropane diandydride (6FDA)-durene polyimide (PI) that was 
produced. The resulting membrane greatly enhanced the transport chan-
nels for four gases: N2, O2, CH4, and CO2. Nevertheless, the selectivity 
of the CO2/CH2 and CO2/N2 gases was reduced. The rise in gas trans-
port may be primarily attributed to the inclusion of ZIF-8, which in-
creased free space and disrupted the polymer chain in the membrane. 

Figure 2. 3D structures of various MOFs. Reprint permission from 
reference [54], Copyright 2021, Elsevier.
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Membrane 
material MOF type 

Filler 
loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

PEI MOF-5 25.0 6.00 25 - - 5.4 23.4 [176]

Matrimid- 5218 MOF-5 30.0 2.00 35 - - 20.2 44.7 [177]

PIM-1 MOF-801 5.0 0.40 35 9686.00 27.0 - - [178]

Pebax-1657 ZIF-7 22.0 3.75 25 111.00 97.0 - - [11]

Pebax-1074 ZIF-7 25.0 3.00 30 95.00 28.1 - - [179]

Pebax-2533 ZIF-7-OH 14.0 4.50 25 273.00 38.1 - - [180]

PIM-1 NH2-ZIF-7 20.0 2.00 30 2953.00 20.6 - - [181]

Pebax-1657 PVAm ZIF-8 5.0 11.00 35 162.00 81.0 - - [182]

PVAm ZIF-8 - 1.65 22 297.00 83.0 - - [183]
a) PVA/PG ZIF-8 5.0 95 328.00 370.0 - - [184]

b) PBI/ Matrimid® 5218 ZIF-8 10.0 7.00 150 107.00 16.1 - - [185]
c) PTMSP ZIF-L 20.0 2.00 - 1489.00 13.5 - - [186]

Pebax-1657 ZIF-C 85-124 (20) 20.0 2.00 24 387.00 47.1 - - [187]

PIM-1 ZIF-67 20.0 2.00 30 3542.00 24.2 - - [188]

Pebax-2533 ZIF-11 70.0 2.00 20 - - 402.9 12.5 [189]

6FDA-DAM ZIF-11 20.0 4.00 30 - - 257.0 31.0 [190]
d) 6FDA-TP PI ZIF-90 50.0 9.80 35 - - 63.0 36.0 [191]

PIM-1 e) BCoC-ZIF 10.0 3.00 25 7326.00 32.5 - - [192]

Matrimid 5218 MIL-101 10.0 10.00 35 6.95 52.0 - - [155]

Matrimid 9725 NH2-MIL-125 30.0 9.00 35 - - 50.0 37.0 [161]

Matrimid 5218/PVDF MIL-101 10.0 7.00 35 - - 14.9 62.0 [193]

Matrimid 5218 MIL-101-IL 20.0 0.70 30 9.90 26.9 - - [194]

Pebax-1657 NH2-MIL-53 5.0 10.00 35 134.60 59.3 - - [195]
f) 6FDA-ODA PI UiO-67 10.34 35 - - 20.8 15.0 [148]

g) ODPA-TMPDA PI UiO-66-(OH)2 20.0 1.00 35 125.00 38.9 - - [170]

6FDA-DAM PI UiO-66 14.0 2.00 35 - - 1912.0 31.0 [196]

Matrimid® 5218 h) UiO-66-NH2@ICA 10.0 3.00 25 - - 40.1 64.7 [197]

Polymide-11 UiO-66-NH2 - 0.49 34 - - 7.6 95.1 [198]

Matrimid® 5218 UiO-67 10.0 5.00 30 - - 27 75.0 [199]

Matrimid® 5218 HKUST-1-NH2 20.0 1.00 35 13 GPU 42.7 - - [174]

6FDA-durene HKUST-1 10.0 1.00 25 1.41 1.2 1.4 1.3 [200]

PSf i) HKUST-1/S1C 16.0 2.75 35 2.00 1.5 2.0 0.9 [201]

Pebax-1657 j) CuBDC-ns@MoS2 2.5 4.00 35 123.00 69.0 123.0 18.0 [202]

PIM-1 k) NUS-8-COOH 2.0 2.00 25 10400.00 31.0 - - [203]
l) PEGMEA m) Cu-TCPP 0.1 1.50 25 1183.00 75.6 - - [204]

Pebax n) SUM-9 1 2 25 539 24.7 - - [205]

Polyvinyl acetate Mg-MOF-74 20 6 - - - 4.7 GPU 24.8 [206]

PDMS Mn-MOF-74 2.5 4 30 1466 18.0 - [207]

a) Piperazine glycinate (PG); b) polybenzimidazole (PBI)); c) poly(1-trimethylsilyl-1-propyne) (PTMSP); d) thermoplastic (TP); e) basic cobalt carbonate supported 
zeolitic imidazolate framework-67 (BCoC-ZIF); f) oxydianiline (ODA); g) 4,4ʹ-oxydiphthalic anhydride (ODPA), 2,4,6-trimethyl-m-phenylenediamine (TMPDA); h) 
imidazole-2-carbaldehyde (ICA); i) Silicalite-1 (S1C); j) nanosheet (ns); k) National University of Singapore (NUS); l) poly(ethylene glycol) methyl ether acrylate 
(PEGMEA); m) tetrakis(4- carboxyphenyl)porphyrin (TCPP); n) Sichuan University Materials (SUM)

Table 5. Evaluation of MMMs Created with Different Combinations of Polymer and MOFs, Including Their Performance, Optimal and Operating
Conditions, and Modifications to the MOFs
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Conversely, the decline in selectivity can be attributed to the ex-
cessively higher transportation rates for CH4 and N2 than CO2. Bae et 
al.[142] incorporated ZIF-90 into 6FDA-diamino-mesitylene (DAM) PI 
using the non-solvent-induced crystallization process, producing 
6FDA-DAM/ZIF-90 MMMs and adding ZIF-90 to the 6FDA-DAM PI 
significantly enhanced gas permeability and membrane selectivity. 
Specifically, CO2/CH4 selectivity increased from 24 to 37, while CO2 
permeability rose from 390 to 720 Barrer. 

Japip et al. examined how the gas transportation capabilities of 
6FDA-Durene were affected by three distinct diameters (600 nm, 200 
nm, and 30 nm) of ZIF-71[143]. The gas separation efficiency ach-
ieved with membranes containing ZIF-71 particles smaller than 200 nm 
was superior to that of membranes containing ZIF-71 particles larger 
than 200 nm. Remarkably, the MMMs containing ZIF-71 particles of 
200 nm in diameter demonstrated superior gas separation ability. Yahia 
et al. conducted a study that produced MMMs by incorporating ZIF-8 
particles of varied sizes (ranging from 45 nm to 450 nm) into a PIM-1 
matrix[144]. These membranes were explicitly designed for the iso-
lation of CH4 and CO2 gases. The result suggested that the gas trans-
port capabilities of MMMs were most significantly enhanced when 
they incorporated ZIF-8 particles measuring 120 nm, which were uni-
formly distributed throughout the material. The membranes demon-
strated a remarkable selectivity of 11.4 for CO2/CH4 and a CO2 perme-
ability of 9700 Barrer.

Suhaimi et al. examined MMMs that included ZIF-8 particles modi-
fied with three distinct amino-functional groups (mono, di, and tri-
amine)[145]. These particles were incorporated into a polymer matrix 
made of 6FDA-durene to separate CH4 and CO2 gases. Both inves-
tigations demonstrated that the amine-functionalized MOFs displayed 
flawless and consistent particle circulation, resulting in enhanced per-
meability and selectivity. Zhang et al. synthesized ZIF-8@CNTs by 
combining acidified carbon nanotubes (CNTs) with ZIF-8 nano-
particles[146]. These were subsequently incorporated into Pebax 
MMMs. Adding oxygen groups and carboxyl groups to ZIF-8@CNTs 
resulted in excellent filler dispersion inside the MMMs. As a result, 
there was a rise in the available space, which enhanced the adsorption 
of CO2 and the separation performance of CO2/N2.

Yuan et al.[147] were the first to create a ZIF-300/polyether block 
amide (PEBA) MMM by combining ZIF-300 crystals with the PEBA 
matrix. This MMM was then used to capture CO2. The ZIF-300 crys-
tals that were obtained were evenly distributed throughout the PEBA 
matrix, maintaining the pore structure intact. This resulted in a remark-
able ability to absorb CO2 and a high selectivity for CO2/N2. 
Consequently, the pure PEBA membrane's CO2/N2 selectivity and per-
meability were enhanced by adding ZIF-300 crystals, reaching a max-
imum improvement of 30 wt%. The Zn atoms in the tetrahedral struc-
ture are surrounded by four imidazolate linkages, each of which may 
bind to two other molecules. These links connect the Zn atoms, form-
ing a 3D network with the stated topology. The hypothesis posited that 
ZIFs synthesized with a secondary linker would have a notably greater 
capacity for sorption and a stronger affinity for CO2 than N2. These 
ZIFs also showed exceptional performance despite having a limited 

surface area. The disparity in structure ultimately led to distinct inter-
actions with CO2 gas molecules.

4.2.2. MIL-based MMMs
MIL is a series of MOFs composed of trivalent metal ions (Al, Cr, 

Ti) coupled to oxygen-anion-terminated linkers. MILs showcase desir-
able traits like a significant pore volume, exceptional resistance to 
chemicals, a high surface area, an impressive capacity for gas adsorp-
tion, and distinctive qualities related to structural breathing. Due to the 
presence of hydroxyl groups, it exhibits strong interaction with CO2 
and consists of a single-direction diamond-shaped pore channel. 
Contemporary scholarly works suggest that MILs are effective fillers 
in membrane development due to their strong compatibility and uni-
form dispersion with polymers, resulting in superior gas separation. 
MOFs are commonly employed in MMMs as fillers, with several 
MOFs, such as MIL-125, MIL-101, MIL-68, and MIL-53, described 
and utilized.

Interestingly, the diameter of the apertures of MILs is more sig-
nificant than the kinetic diameter of gas molecules, like CH4 (3.8 Å), 
CO2 (3.3 Å), N2 (3.6 Å), and H2 (2.9 Å)[128]. MILs are composed 
of the benzene ring. Fillers with a broad aperture increase permeability 
but have a detrimental impact on selectivity. Considerable focus has 
been directed on altering these sorts of fillers to impede the perme-
ability of the larger gas molecules. Amine functionalization is com-
monly employed for this purpose[148,148]. MIL-53 comprises inter-
connected dicarboxylate anions and hexagonal chains, creating a 3D 
network[150]. Every dicarboxylate function joins two metal centers. 
Subsequently, it connects with another set of metals, where the second 
dicarboxylate bonds similarly. This method results in the formation of 
octahedral coordination around the metal. MIL-53 has a distinctive at-
tribute referred to as the breathing effect, which arises from the adjust-
able connection between the carboxylate groups and the metal centers. 
Breathing refers to the reversible change in the volume of the unit cell 
when guest molecules are absorbed or released[151]. The CO2 quadru-
pole moment enhances its adsorption and reduces the size of particles' 
pores, resulting in beneficial effects for purification purposes[152]. 
Also, MIL-101 is created by combining terephthalate linkers with car-
boxylate trimers connected to octahedrally bonded chromium ions[153].

Abedini et al. created MMMs by spreading NH2-MIL-53 within a 
poly(4-methyl-1-pentyne) (PMP) matrix. They discovered that the se-
lectivity of CO2/CH4 in these MMMs was 15, and the CO2 perme-
ability was 259 Barrer when the MMMs had a 30 wt% filler load. 
These values were higher compared to a pure PMP membrane. The 
NH2-MIL-53/PMP material exhibited superior separation performance 
compared to the Robeson upper bound at a temperature of 30 °C[154]. 
Naseri et al. used micron-sized MIL-101 crystals with a loading ca-
pacity of up to 30 wt% as the inorganic constituent and merged them 
with Matrimid to produce MIL-101/Matrimid MMMs[155]. The devel-
oped membranes were subsequently assessed for their ability to sepa-
rate CO2 from N2 and CO2 from CH4. The MIL-101 particles exhibited 
more attraction to CO2 than N2 and CH4 gases. The optimal perform-
ance was achieved with a 10 wt% loading of MIL-101, resulting in an 
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improved CO2 permeability of 6.95 Barrer and CO2/CH4 selectivity of 
56 compared to the initial values of 4.44 Barrer and 35, respectively.

Sabetghadam et al. examined the impact of MOF shape on the gas 
separation efficiency of MMM[156]. The NH2-MIL-53(Al) material, 
which exists in three distinct forms: microneedles, nanorods, and nano-
particles- was incorporated into a Matrimid polymer matrix to separate 
CH4 and CO2 gases. The researchers found that NH2-MIL-53(Al) with 
a nanoparticle structure exhibited a notable enhancement in CO2 per-
meability compared to other structures. However, there was no increase 
in CO2/CH4 selectivity when the MMM supplied an equal amount of 
CH4 and CO2. The NH2-MIL-53(Al) nanoparticle disrupted the 
Matrimid polymer chain, resulting in a rise in the polymer's free frac-
tion volume. The enhanced gas permeability in the MMM resulted 
from the combined effect of the increased volume of polymer with a 
higher free fraction and the presence of porous MOF. However, when 
the filler content of NH2-MIL-53(Al) was increased to 16 wt%, a de-
crease in gas permeability was detected. This decrease was linked to 
the stiffening of the polymer chain. The gas permeability of the MMM 
containing NH2-MIL-53(Al) nanoparticles was excessively attenuated 
compared to the nanorods, indicating that the nanoparticle shape allows 
for improved interaction with the Matrimid polymer matrix. 
Subsequently, they introduced NH2-MIL-53(Al) nanoparticles compris-
ing 20 wt% of the mixture into a highly permeable 6FDA-DAM PI. 
This enhanced 88% CO2 permeability while maintaining a somewhat 
steady CO2/CH4 selectivity compared to the original 6FDA-DAM 
material.

Rodenas et al. studied the impact of filler and polymer on MMMs. 
The NH22 MIL-53(Al) and MIL-101(Al) were individually distributed 
in PSf matrices and PI. The gas transport efficiency of MIL-53(Al)/PI 
and MIL-101(Al)/PSf is 60% higher than that of the pure matrix while 
maintaining selectivity[157]. Feijani et al. studied PVDF MMMs pro-
duced with MIL-53(Al), which showed better CO2/CH4 permeability 
but lower CO2/CH4 selectivity than pure PVDF membrane[158]. As a 
result, they proposed the existence of indiscriminate gaps between the 
fillers and polymer matrix, which caused a decrease in gas selectivity. 
Furthermore, MIL-53(Al) exhibits a large pore size (7-8Å) compared 
to the gas kinetic diameter, potentially enhancing the reduction in gas 
selectivity. Nevertheless, including an amine group in NH2-MIL-53(Al) 
resulted in a simultaneous increase in gas permeability and selectivity. 
This suggests a strong competence between the polymer matrix and 
filler and indicates that the formation of nanovoids was eliminated 
through the functionalization of the filler. Dong et al. examined the 
impact of MIL-68(Al)/PI MMMs on the separation of CO2. The results 
demonstrated that the selectivity and permeability of CO2 were 2.25 
times greater than those of the original polymer. This may be linked 
to the strong contact between the polymer and the surface hydroxyl 
groups of MIL-68(Al) and the enhanced affinity of CO2 adsorption[159].

MIL-101 is commonly selected for gas separation in MMM due to 
its greater specific surface area and high affinity for CO2. MIL-101 has 
a higher CO2 adsorption capacity than CH4 due to its significant quad-
rupole moment and polarity[160]. This characteristic makes it well- 
suited for the separation of CO2 and CH4. Waqas Anjum conducted a 

study on the impact of the NH2 group on gas transportation. The re-
sults revealed that when NH2-MIL-125(Al) fillers and MIL-125(Al) 
were included in a PI matrix, the permeability increased to 21 and 44 
Barrer, respectively, compared to the pure polymer. The CO2/CH4 se-
lectivity increased up to 23%. But, NH2-MIL-125(Al)/PSf demonstrated 
enhanced permeability and selectivity compared to a pure PSf mem-
brane, with a permeability of 13.3 barrer and a selectivity of 10%[161].

4.2.3. UiO-66-based MMMs
UiO-66 belongs to the subfamily of zirconium-based MOFs. The 

structure consists of zirconium oxide (Zr6O4(OH)4) nodes that are 
linked with 1,4-benzenedicarboxylate (BDC) ligands. The structure 
consists of tetrahedral and octahedral cages in a ratio of 2:1, connected 
by triangular pore windows[162]. Additionally, it possesses a notable 
adjustable pore structure, level of porosity, and substantial surface area, 
rendering it highly attractive for gas separation purposes. The UiO-66 
material has been altered on its surface to possess polar and essential 
characteristics, including methoxy (-OMe), nitro (-NO2), amino (-NH2), 
and hydroxylated (-OH) groups. Specifically, studies have shown that 
UiO-66 treated with polar groups may increase the selectivity of 
CO2/CH4 and CO2/N2 and improve CO2 adsorption[163-165].

The study conducted by Nik et al. utilized five distinct UiO-67, 
UiO-66, NH2-UiO-66, MOF-199 (Cu-benzene-1,3,5-tricarboxylate 
(BTC)), and NH2-MOF-199 in the production of Matrimid-based 
MMMs[148]. Among the several membranes assessed, those made us-
ing UiO-66 demonstrated exceptional gas permeability for CO2. In con-
trast, the introduction of amine groups to the MOF-MMM 
(NH2-MOF-199) enhanced CO2 permeability and selectivity over CH4. 
It was determined that the H-bonding between the -COOH groups in 
the polymer chain and the -NH2 groups in the filler was responsible 
for the improved selectivity. This interaction promotes the polymer 
chain process’s stiffening at the interface. As a result, the permeability 
was reduced while the selectivity was enhanced. Liu's group produced 
UiO-66 membranes with exceptional CO2/N2 separation capabilities us-
ing a novel method, including a simultaneous Zr source[166]. The 
membrane has excellent gas separation capabilities and exhibits out-
standing chemical stability.

In addition, it has been demonstrated that UiO-66/PEBA MMMs ex-
hibit a significant attraction to CO2, resulting in an increased CO2/N2 
selectivity and CO2 permeability of approximately 40-65% and 
80-90%, respectively, compared to PEBA membranes[167]. Qian et al. 
produced MMMs by integrating a 6FDA-Durene polymer matrix with 
imide-functionalized UiO-66-NH2 nanoparticles[168]. The purpose was 
to improve the selectivity and permeability of CO2/CH4. Jin et al. uti-
lized a novel technique to attach UiO-66-NH2 to PI by modifying the 
PI matrix with a carboxylic acid[169]. This modification removes the 
indiscriminate space between the fillers and the polymer matrix. These 
membranes also exhibit an elevated CO2 plasticization pressure, rang-
ing from 10 to 30 bar, and demonstrate exceptional resistance to aging, 
with a minor drop in CO2 permeability. Chuah et al. examined several 
ligands containing diverse functional groups, including hydroxyl 
groups, bromine, and amine, which were attached to UiO-66 particles 
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to create UiO-66-(OH)2, UiO-66-Br and UiO-66-NH2 respectively[170]. 
Including UiO-66 derivatives improved the rate at which CO2 mole-
cules spread and decreased the ability of N2 molecules to dissolve, 
leading to a greater preference for CO2 over N2. The selectivity of 
CO2/N2 was increased by 12%, 4% and 17% with the use of 
UiO-66-(OH)2, UiO-66-Br and UiO-66-NH2 respectively. The results 
indicate that including diverse functional groups is a useful strategy for 
improving the separation efficiency of MMM. Anjum and colleagues 
created MMMs by forming a strong chemical bond between Zr tereph-
thalate UiO-66 fillers and a PI matrix functionalized with amine 
groups. The gas transportation was improved by incorporating amino-
benzoic acid (ABA) and benzoic acid (BA) into NH2-UiO-66. The re-
sulting NH2-UiO-66-ABA-filled MMMs demonstrated great perme-
ability and selectivity, making them excellent candidates for CO2/CH4 
separations[171]. 

4.2.4. HKUST-1-base MMMs
HKUST-1, also referred to as MOF-199 and Cu-BTC, is composed 

of a benzene-1,3,5-tricarboxylate ligand that serves as a connector, 
linking dicopper tetracarboxylic paddlewheel secondary building units. 
Another possible candidate for synthesizing MMMs for gas separation 
is being considered because of their significant accessible surface area 
and high porosity[172]. Casado-Coterillo et al. created CS-based 
MMMs and performed gas permeation tests with pure N22 and CO2 
and gases[173]. The CS membrane holding 5 wt% of HKUST particles 
demonstrated the highest CO2 permeation rate of 4754 ± 1388 Barrer, 
along with the highest CO2/N2 selectivity of 19.3. This effect may arise 
from the compatibility and robust adhesion between the HKUST and 
CS polymer matrix.

Chuah et al. synthesized Amine-functionalized HKUST-1 nano-
crystals using a post-synthetic approach. Subsequently, these nano-
crystals were employed to fabricate MMMs designed to separate 
CO2/N2[174]. On the other hand, the HKUST-1 nanocrystals that were 
functionalized with amines significantly increased the selectivity of 
CO2/N2 (by up to 38%) and improved the permeability of gases. This 
elevation in performance is highly desirable. Nevertheless, the 
HKUST-1 compound with amine functionality successfully reduced the 
rate of diffusion and solubility of N2 while significantly enhancing the 
rate of diffusion of CO2 by a factor of 100. Wang et al. fabricated 
HKUST-1@pyrrole (Pyr) composites and the original material using a 
rapid synthesis process at room temperature. HKUST-1@Pyr0.3 shows 
an exceptional ability to adsorb CO2, having a 3.19 mmol/g capacity 
at 298 K temperature and 100 kPa pressure. Furthermore, this compo-
site exhibited a significant preference for CO2/N2 bicomponent gas 
(with a ratio of 15:85), surpassing the selectivity of HKUST-1 by 
150%[175].

Functionalizing the HKUST-1 nanofiller with amine groups de-
creased the effective pore diameter[174]. The gas selectivity of the re-
sulting MMMs can be improved by limiting the diffusion of more 
giant gas molecules, like N2, into a more constricted channel. 20 wt% 
pure HKUST-1 nanofiller increased the gas permeability, while gas se-
lectivity remained unchanged. Including the HKUST-1 filler, we have 

greatly enhanced the permeation and dissolvability of both CO2 and N2 
without exhibiting any selectivity. The addition of amine-functionalized 
HKUST-1 nanofiller increased the CO2 selectivity over N2, increasing 
it from 33.8 to 42.7. This improvement was accomplished by sig-
nificantly enhancing the ability of CO2 to spread out while at the same 
time reducing the ability of N2 to diffusivity and solubility.

Overall, MOFs have been extensively applied in gas separation stud-
ies because of their adjustable pore size, significant specific surface 
area, and exceptional porosity. Nevertheless, defects at the interface be-
tween the polymer and filler pose a significant challenge in enhancing 
the efficacy of MOF-based membrane separation. The ongoing research 
primarily focuses on improving the interface compatibility between 
polymers and fillers.

4.3. COF-based MMMs
The growing acceptance of incorporating COFs as additives in the 

fabrication of MMMs comes from their unique two-dimensional (2D) 
porous crystalline structures coupled with strong covalent bonds. Due 
to its high crystallinity structure, low densities, acceptable features, 
outstanding heat resistance, tunable organic groups, permanent poros-
ity, and large specific surface area, it is commonly employed as an op-
timal material for gas separation membranes[208-210]. COFs provide 
notable advantages due to their exceptional chemical and thermal sta-
bility, which may be attributed to their covalent linkages[211]. 
Additional investigation and progress are anticipated to result in more 
sophisticated MMMs with improved stability, selectivity and perme-
ability, making them suitable for environmental and industrial 
operations. Although several structures of COFs have been synthesized, 
only a limited number of COFs have been utilized in the field of mem-
brane gas separation, mainly mixed COF-polymer membranes[212- 
214]. Figure 3 shows the general structure of COFs. 

Table 6 concisely overviews COFs-based MMMs fabricated using 
various polymers and supplements for CO2 separation. Biswal et al. 
generated ultrathin TpBD synthesized with 1, 3, 5-triformylphlor-
oglucinol (Tp) and benzidine (BD) and TpPa-1 constructed by Tp with 
p-phenylenediamine (Pa-1) sheets using the mechanical grinding of 
their bulk phases[215]. The formation of the MMMs involved the re-
action between two COF nanosheets and polybenzimidazole (PBI-BuI). 
The MMMs developed with a 50% loading of COF exhibited reduced 
selectivity of CO2/CH4 and CO2/N2 compared to the neat poly-
benzimidazole membrane. The permeability of CO2 in the MMMs was 
approximately seven times higher compared to the original PBI-BuI 

Figure 3. COFs structure diagram. Reprint permission from reference 
[219], Copyright 2024, Elsevier.
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membrane. This can be attributed to the presence of porous features 
in the embedded COF nanosheets. 

Duan et al. synthesized a combination of Pebax-1657 matrix and 
COF-5 nanosheets to create MMMs for CO2 separation. These MMMs 
exhibited a significant increase in the permeability of CO22 compared 
with unmodified membranes. Two potential theories were put forward 
to account for this tendency. 1) COF-5 and Pebax-1657 exhibit strong 
compatibility, allowing for the formation of H-bonds in the membrane 
and facilitating the transport of CO2. 2) The COF-5 possesses a porous 
structure with a pore diameter of 2.7 nm, which reduces the barrier to 
gas transportation across MMMs[57]. Furthermore, when filler loading 
ranged from 0.1∼1 wt%, the selectivity of CO2/N2 increased compared 
with the unmodified membrane, and there was an increase in 
permeability. The observed performance may be attributed to the uni-
form distribution of fillers within the specified range, resulting in the 
selective penetration of CO2 over N2 across the membrane. To provide 
more elucidation, Figure 4 presents a structure diagram of the behavior 
of the COF-based MMMs in the process of separating CO2 from N2. 
During a 120-hour testing period, the membranes consistently demon-
strated steady function, indicating long-term stability.

Kang et al. established the initial application of COF-based MMMs 

Figure 4. Gas transport schematic diagram of the COF-5/Pebax 
MMMs. Reprint permission from reference [57], Copyright 2019, 
Elsevier.

for gas separation by implementing NUS-2 and NUS-3[214]. The prep-
aration of MMMs involved blending 2D COF nanosheets with PBI and 
poly (ether imide). These MMMs exhibited exceptional water stability, 
improved mechanical strength, enhanced gas permeability, and se-
lectivity between the COFs and polymer matrices. The NUS-2@PBI 
MMMs exhibited an H2/CO2 selectivity of 31.4 when loaded with 20 
wt% COFs, above the top limit set by Robeson in 2008. Nevertheless, 

Membrane 
material COF 

Filler 
loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

Matrimid-5218 a) ACOF-1 16.00 4.0 35 - - 15.3 32.4 [50]

Pebax-1657 COF-5 0.40 1.0 30 493.0 49.3 - - [57]

Pebax-1657 PEG@COF 3.00 1.0 25 - - 944.0 33.0 [211]

PEBA TpPa-1-nc 1.00 3.0 25 7.5 GPU 72.0 - - [213]

PBI NUS-2 20.00 3.5 35 - - 4.4 33.9 [214]

PBI-BuI TpBD 50.00 20.0 35 - - 14.8 48.7 [215]

Pebax-1657 Covalent triazine 
piperazine polymer 0.025 3.0 25 73.0 79.0 - - [216]

Matrimid b) HHU-COF-2 24.00 1.0 25 - - 7.1 51.0 [217]

6FDA-DAM 3D-COF 10.00 1.0 25 - - 850.0 29.0 [220]

PI c) SNW-1 5.00 4.0 25 - - 12.4 13.3 [221]

PIM-1 SNW-1 28.00 2.0 30 4270.0 21.9 - - [222]

6FDA-DAM COF-300 - 1.0 25 - - 9830.0 75.0 [223]

PSf UiO-66-NH2 @ 
TpPa-1 5.00 1.0 25 - - 48.0 79.0 [224]

Pebax
d) [bmim][Tf2N] @ 

COF-300 7.00 1.0 30 - - 1601.0 39.0 [225]

e) XLPEO 2D-COF 1.23 5.0 30 803.9 61.4 - - [226]

PIM-1 f) FCTF-1 2.00 1.0 30 - - 4383.0 22.0 [227]

Pebax-1657/ PVDF g) TpDT 1.00 1.0 25 - - 142.3 36.0 [228]

PDA h) TD-COF 3.00 1.0 30 9750.6 26.4 - - [229]

a) Pazine-linked covalent organic frameworks (ACOF-1); b) Heinrich-Heine University (HHU)); c) Schiff base network (SNW); d) 1-butyl-3-methylimidazolum 
bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]); e) Crosslinked poly(ethylene oxide) (XLPEO); f) fluorinated covalent triazine frameworks (FCTF-1); g) TpDT 
synthesized with 1,3,5-tri-formyl-phloroglucinol (Tp) and 3,5-diamino-1,2,4-triazole (DT); h) transverse direction COF (TD-COF)

Table 6. Evaluation of MMMs Created with Different Combinations of Polymer and COFs, Including Their Performance, Optimal and Operating
Conditions, and Modifications to the COFs
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the flow (4.08 ± 0.03 Barrer) remained insufficient for commercial use.
The MMMs were created by Thankamony et al. for gas separation 

of CO2/CH4 and CO2/N2 utilizing covalent triazine piperazine (CTPP) 
in polyether-block-amide (Pebax-1657)[216]. The CTPP system, when 
combined with Pebax-1657, demonstrated robust interaction due to a 
substantial hydrogen bonding density. This resulted in the stiffening of 
the Pebax chain, even when the loading rates were modest. Imine- 
based COFs incorporating a biphenyl linker and triazine node were 
employed by Bügel et al.[217]. Additionally, they serve Matrimid- 
based MMMs as fillers along with their fluorinated derivative to sepa-
rate CO2 and CH4. This choice was made based on the proper porosity 
and crystalline structure of the COFs, which resulted in enhanced 
membrane performance. When the COF filler loaded 24 wt%, the per-
meability of CO2 increased from 6.8 to 13 Barrer. Nevertheless, a nota-
ble issue emerged regarding the enduring strength of the MMMs since 
they underwent shut-off within one year.

Guoliu et al. produced a set of MMMs by dispersing β-ketamine- 
linked TpTta-COF constructed by Tp and 4,4ʹ,4ʹʹ-(1,3,5-triazine-2,4,6- 
triyl)trianiline (Tta) into PIM-1. To prevent the production of interface 
defects, it is essential to consider the separation selectivity and perme-
ability of MMMs in the CO2 transmission channel. The TpTta-COF 
and PIM-1 MMM exhibited a robust interaction, resulting in the most 
efficient separation of CO2/N2 with a selectivity of 26.3 and perme-
ability of 9672 Barrer. The observed favorable pairing performance can 
be attributed to the allocation of TpTta-COF particles, which strongly 
attract CO2 and play a crucial role in gas membrane separation[218].

The aforementioned studies emphasize the potential of COFs to play 
role in gas membrane separation. This is attributed to their adjustable 
chemical properties, distinct nano-channels, and organic structure. 
Incorporating COFs into polymer matrices has been shown to have 
long-term performance, stability, selectivity, and enhanced gas 
permeability. Additional investigation and advancement in this field 
may result in the extensive utilization of COF-based membranes for ef-
fective gas separation, improving sustainability. 

4.4. HOF-based MMMs
HOFs are a newly discovered type of crystalline porous material. It 

is created by metal-organic molecules or linking organic molecules to-
gether through intermolecular H-bonds, forming networks in 1D, 2D, 
or 3D[230-232]. HOFs exhibit significant potential in the domain of 
gas adsorption and separation due to their notable characteristics, in-
cluding tunable size, favorable compatibility, metal-free high stability, 
low densities, high crystallinity, large surface area, convenient purifica-
tion, adjustable pore size, designable structure, recrystallization through 
self-healing, flexibility, easy regeneration and recovery, facile re-
generation, and sustainability of the environment[233]. Figure 5 shows 
a general structure of HOFs.

The utilization of HOF-21 ([Cu2(ade)4(H2O)2] (SiF6)2) nanoparticles 
as a filler in Pebax polymer MMMs for CO2 separation was proven by 
Wang et al.[234]. The MMMs obtained had exceptional performance, 
achieving a permeability of 750 Barrer CO2/N2 selectivity of 60 and 
CO2/CH4 selectivity of 40, surpassing the top limit set by Robeson.

4.5. MXene-based MMMs
MXenes are a new class of 2D materials with the formula Mn+1XnTx 

(n = 1~4). In this formula, M represents transition metals like W, Ta, 
Sc, Hf, Mo, Nb, Zr, Y, Cr, or Ti. X represents C or N, while T repre-
sents surface terminal groups, for example, such as Cl, F, O, and 
OH[235-241]. The distinctive characteristics exhibited by MXene mate-
rials, including their robust hydrophilicity, chemical stability, minimal 
diffusion barriers, elevated permeability, substantial specific surface 
area, increased elasticity, precise sieving capabilities, versatile process-
ability, and exceptional electrical conductivity, render them exception-
ally well-suited for gas separation applications based on membranes 
[241]. Hence, the incorporation of MXene fillers has been shown to 
significantly enhance the mechanical characteristics of the MMMs 
[242]. Numerous approaches exist to produce membranes based on 
MXene, such as integrating certain additives or other materials to cre-
ate MMMs, including MXenes[243].

Table 7 displays the CO2 separation performance of MXene-in-
corporated MMMs in previous studies. Shamsabadi et al. documented 
the synthesis of MXene (Ti3C2Tx)@Pebax MMMs, which exhibited a 
CO2/N2 selectivity of 42 and a CO2 permeability of 1986 GPU[244]. 
The Ti3C2Tx exhibits a robust interaction with the amide group of 
Pebax, enhances the dispersion of Ti3C2Tx, and promotes the transit of 
CO2 through the sub-nano interlayer channels of Ti3C2Tx. Guan et al. 
investigated the Pebax/m-MXene as having superior performance com-
pared to the original Pebax membranes for the CO2/N2 gas permeation 
test through improved MMM gas separation efficiency. The MMM 
membrane, when doped with 0.5 wt% m-MXene, demonstrates a 
CO2/N2 selectivity of up to 93.18 and CO2 permeability of 70.24 
Barrer. These values represent an increase of 15.1% and 67.6%, re-
spectively, compared to the original Pebax membranes[245].

The performance and stability of MXene/Pebax MMMs for CO2 sep-
aration were examined by Liu et al.[246]. When the MXene concen-
tration was increased to 0.15 wt%, the CO2/N2 selectivity and CO2 per-
meance rose by 73.4% and 81%, respectively, relative to the clean 
membrane. Two hypotheses were proposed to explain this excellent gas 
separation performance: 1) The addition of MXene nanosheets contain-
ing a high concentration of polar groups enhanced the attraction of the 
Pebax membrane to CO2 rather than N2. 2) The laminar structure of 
MXene facilitated efficient diffusion of CO2 through the membrane. 
Nevertheless, it was observed that an increase in MXene loading from 

Figure 5. HOFs structure diagram. Reprint permission from reference 
[219], Copyright 2024, Elsevier.
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0.15 to 0.3 wt% resulted in a reduction in CO2 permeance and CO2/N2 
gas selectivity. In addition, MMMs with 0.15 wt% MXene demon-
strated exceptional stability throughout the 120-hour continuous test. 
The membrane showed outstanding and consistent gas separation capa-
bilities, with a CO2 permeance of 21.6 GPU and CO2/N2 selectivity of 
72.5. 

Shi et al. examined the difference between Ti3C2Tx and GO in the 
context of MMMs for CO2 separation[108]. MXenes have a notably 
greater maximum loading capacity than GO, primarily attributed to 
their enhanced polymer matrix compatibility. The MXenes@Pebax 
MMMs exhibit a significant improvement in CO2 separation perform-
ance, with a 66% enhancement in CO2 permeability under dry-gas 
circumstances. In contrast, a notable improvement was seen in the per-
meability of CO2 (178%) and selectivity of CO2/N2 (74%) for wet-state 
membranes. However, Guan et al. examined the CO2 permeability of 
0.5 wt% m-MXene/Pebax MMMs. The results showed that these 
MMMs had a CO2/N2 selectivity of 104.85 and a CO2 permeability of 
86.22 Barrer[245]. This can be attributed to the improved molecular 
sieving effect caused by interlayer channels of different widths. 
MXene-based MMMs exhibit significant promise for advancement as 
a nascent membrane material in gas separations. 

4.6. g-C3N4-based MMMs
The g-C3N4-based membranes represent a novel type of 2D micro-

porous material with significant promise in gas separation. This is pri-
marily attributed to its distinctive physicochemical characteristics, ad-
justable surface properties, extremely thin thickness, uniform nano-

pores, exceptional chemical and thermal stability, and spore struc-
ture[251-253]. Like graphene oxide (GO), this material has a layered 
structure resembling graphite. This structure comprises linked tri-s-tri-
azine ring units held together by amino groups on the plane and van 
der Waals forces inside the interlayers[254]. The main component of 
the structural units consists mainly of 6-membered rings joined by sp2 
hybridized carbon and nitrogen atoms. 

This arrangement facilitates the formation of an aromatic p-con-
jugated system[253]. This particular type of 2D material exhibits the 
highest level of stability in the carbon nitride allotrope under normal 
operating circumstances for the production of MMMs used in CO2 
separation. Due to its chemical structure, the g-C3N4-based membrane 
has long-term endurance in real-world applications[255,256]. Jomekian 
et al. employed chitosan (CS)-modified g-C3N4 as a dopant for ZIF-8, 
effectively preparing CS/g-C3N4/ZIF-8 membranes. The findings in-
dicate that the g-C3N4 membrane modified with CS and doped exhibits 
enhanced CO2/CH4 ideal selectivity compared to the pure ZIF-8 
membrane. This is attributed to the amine group of CS's strong CO2 
adsorption capability. Furthermore, establishing a carbon-nitrogen bond 
between ZIF-8 and g-C3N4 has been found to have advantageous ef-
fects on enhancing the stability of the membrane[257].

Cheng et al. integrated g-C3N4 into the Pebax-1657 matrix to fab-
ricate MMMs with enhanced CO2 extraction capabilities. Using a ther-
mal-etching approach, the researchers performed an initial analysis to 
synthesize dicyandiamide-sintered g-C3N4 nanosheets (DCN)[258]. 
The nanosheets were subjected to various processing durations (0-8 
hours) to examine the impact of time on the morphology of g-C3N4. 

Membrane 
material Material 

Filler 
loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

Pebax-1657 MXene
1.0 2.0 30 148.0 63.0 - -

[108]
10.0 2.0 30 584.0 59.0 - -

PEG (600) Ti3C2Tx 25.0 1.0 25 813.5 32.2 813.5 27.9 [240]

Pebax-1657 Carboxymethyl cellulose 
(CMC) @MXenes 6.0 1.0 25 521 GPU 40.1 444 GPU 40.4 [240]

Pebax-1657 Ti3C2Tx 0.1 4.0 25 1810.3 GPU 42.0 1810.3 GPU 15.0 [244]

Pebax- Ti3C2Tx MXene 0.05 4.0 25 1986.5 GPU 41.8 1986.9 GPU 14.8 [244]

Pebax-1657 a) m-MXene 0.5 4.0 25 70.24 93.18 - - [245]

Pebax-1657 Ti3C2Tx 0.5 4.0 25 86.2 104.8 - - [245]

Pebax-1657 Ti3C2Tx 0.15 2.0 25 21.6 GPU 72.5 - - [246]
b) CTA Ti3C2Tx 3.0 1.5 25 - - 16.0 57.1 [247]

c) SILM MXene 25 26.35 GPU 319.2 26.4 GPU 249.0 [248]

PVDF Pebax/PEGDA-MXene 1.0 30 765.5 54.5 - - [249]

PDMS d) D-MXene 1.0 1.0 35 13917.0 13.6 - - [250]

PDMS e) ML-MXene 3.0 1.0 35 12556.0 12.5 - - [250]

a) multilayered MXene (m-MXene); b) cellulose triacetate (CTA); c) supported ionic liquid membrane (SILM); d) delaminated-MXene (D-MXene); 
e) multilayer MXene (ML-MXene)

Table 7. Evaluation of MMMs Created with Different Combinations of Polymer and MXene, Including Their Performance, Optimal and Operating 
Conditions, and Modifications to the MXene
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Pebax was subjected to a loading concentration of DCN-4 nanosheets 
varying from 0.25 to 1 wt% to evaluate MMM's separation capability. 
Due to their CO2-philic nature, DCN nanosheets improve CO2/N2 se-
lectivity and CO2 sorption solubility.

Furthermore, the produced MMMs exhibited improved selectivity in 
CO2/N2 diffusion while reducing the diffusivity coefficients of CO2/N2. 
The findings indicate that loading of 0.25 wt% is the most favorable 
concentration, resulting in the concurrent enhancement of CO2 perme-
ability and CO2/N2 selectivity. The cause of this could be the specific-
ity with which g-C3N4 nanosheets can adsorb and transfer CO2 over 
N2[258]. 

Li et al. developed a new SILM that effectively separates CO2/N2 
and CO2/CH4 by encapsulating 1-ethyl-3-methylimidazole acetate 
([EMIm][AcO], IL) within 2D g-C3N4 nanospheres[259]. The confine-
ment effect of g-C3N4 nanospheres, adding IL to the interlayer, can 
significantly improve the membrane's capability to separate substances.

In the year 2021, Wang et al. employed flexible graphene oxide 
(GO) nanosheets as a means to address the structural imperfections 
present in g-C3N4 nanosheets[260]. Interactions between -NH2/-NH 
groups on the nanosheets' edges and -COOH groups on the surface of 
GO compensate for structural defects caused by the exfoliation process 
of g-C3N4 nanosheets. In this work, GO was effectively incorporated 
into g-C3N4 nanosheets. Modifying the flaws or voids of g-C3N4 nano-
sheets can be advantageous in the construction of a separation mem-
brane that is both continuous and stable. In contrast, the g-C3N4 base 
membrane exhibits a notable enhancement in mechanical strength, ac-
companied by commendable long-term stability.

Table 8 presents the summary of previously reported g-C3N4-added 
MMMs. In a study by Voon et al., functionalized g-C3N4 was in-
tegrated into the PIM-1 polymer matrix to fabricate gas separation 
membranes (MMMs)[261]. This study aimed to evaluate the impact of 
various functional groups employed for modifying g-C3N4 on the effi-
ciency of MMMs in separating O2/N2, H2/N2, and CO2/N2. The gas 
separation findings indicate that the permeability of CO2 in all manu-
factured MMMs containing 1 wt% was greater than that of other gas-
eous substances. The observed outcomes were attributed to the g-C3N4 
nanosheets' propensity to adsorb CO2 compared to other gaseous 
substances. The g-C3N4-D nanosheets, which were reformed with flexi-

ble propyl sulfonic acid groups, exhibited superior separation perform-
ance compared to other functionalized g-C3N4 nanosheets. This was 
evidenced by a CO2 permeability of 3740 Barrer 19.8 and a CO2/N2 
selectivity. 

The field of gas separation is increasingly focusing on g-C3N4 nano-
sheets due to their excellent stability, variable surface characteristics, 
and ordered in-plane void structure. Nevertheless, more enhancements 
are required to address the interface fault between the filler and 
polymer. Furthermore, the direct involvement of nanopores on the sur-
face of g-C3N4 in gas molecule transport poses a challenge, leading to 
a decline in the separation efficiency of the membranes. Hence, effec-
tively harnessing the pore structure on the surface of g-C3N4 nano-
sheets remains a significant obstacle. 9 presents a summary of the gas 
separation statistics obtained from the literature for MMMs that are 
embedded with g-C3N4 nanosheets.

4.7. LDH-based MMMs
LDHs, typical ionic intercalated 2D materials, have the general for-

mula[M2+
1-xM3+

1-x(OH)2][An-]x/n.mH2O, where M2+, M2+, and An- repre-
sent di-valent cations, tri-valent cations (e.g., Mn3+, Ga3+, Zn2+, Mg2+, 
Al3+, Cr3+, and Fe3+) and the interlayer anions, correspondingly[265]. 
The structure of LDHs consists of a host layer that is positively charg-
ed, including anions, and an interlayer of water. The exceptional gas 
separation performance of LDHs can be attributed to their distinctive 
physical and chemical properties. These properties include a versatile 
chemical composition, the ability to exfoliate LDHs into a single-layer 
nanosheet, a positive charge, adjustable size, tunable interlayer anion 
species, structural topology transformation, and adjustable metal ele-
ments of the host layer, among others[60]. The distinctive character-
istics of LDHs have also resulted in distinct benefits for them in differ-
ent areas of membrane separation and enhanced stability[266].

Table 9 exhibits the CO2 separation performance of LDH-based 
MMMs reported in previous studies. Wang et al. used LDH laminates 
introduced with amino acids (AA-LDH) in the Pebax-1657 matrix to 
create MMMs for CO2/CH4 separation[267]. The MMM material, 
which includes 5 wt% AA-LDH, demonstrates a CO2/CH4 selectivity 
of 31 and an ideal permeability of 790 Barrer. These values are 83.9% 
and 64.6% greater than the original Pebax membrane. Two potential 

Membrane 
material Material 

Filler 
loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

Pebax-1657 g-C3N4 0.25 3.0 25 33.3 67.2 - - [258]

PIM-1 a) g-C3N4-D 1.00 3.5 35 3740.0 19.8 3740.0 12.4 [261]

Matrimid protonated g-C3N4 0.50 3.0 35 - - 7.7 49.6 [262]

Pebax b) g-PTAP 2.50 1.0 25 154.6 83.5 154.6 22.8 [263]

Pebax ZIF-90@g-C3N4 3.00 2.0 25 110.5 84.4 - - [264]

a) g-C3N4 bearing with flexible propyl sulfonic acid groups formed through the reaction between 1,3-propanesultone with amino/ imino groups in g-C3N4
during sulfonation (g-C3N4-D); b) graphitic-polytriaminopyrimidine (g-PTAP)

Table 8. Evaluation of MMMs Created with Different Combinations of Polymer and g-C3N4, Including Their Performance, Optimal and Operating
Conditions, and Modifications to the g-C3N4
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explanations for this exceptional performance were hypothesized: 1) 
Polar amino and carboxyl groups enhance the solubility of CO2 by in-
teracting with quadrupole moments. 2) These groups can operate as fa-
cilitated transport carriers, reversibly reacting with CO2. Additionally, 
following the intercalation of amino acids, LDH demonstrated an in-
creased interlayer gap, hence promoting the diffusion of CO2 into the 
interlayer of LDH. The combined effects of these influences improved 
the permeability of CO2 and the selectivity of CO2/N2 in the 
MMM[267]. In their study, Liu et al. developed a membrane with an 
ultrathin-selective layer of LDHs that carried CO2. This membrane was 
designed to effectively separate CO2, exhibiting a CO2/CH4 selectivity 
of 33 and a CO2 permeance of 150 GPU[268]. Zhang et al. success-
fully achieved heterogeneous structure packing by cultivating 
ZIF-8@LDH/Pebax, which notably improved gas separation efficiency. 
One advantage is that the presence of many hydroxyl groups on the 
surface of ZIF-8 and LDH facilitates the dissolution of CO2, hence en-
hancing gas selectivity[269]. 

LDHs have achieved significant advancements in MMMs for CO2 
separation, leveraging their intriguing interlayer structure and 
characteristics. Nevertheless, it possesses considerable potential for ad-
vancing situations involving separation applications. Enhancing the 
compatibility of LDHs with a polymer matrix or optimizing the molec-
ular sieving performance can be achieved by surface modification, fur-
ther interlayering, or adjusting the layer spacing. Evaluation of MMMs 
created with different combinations of polymer and LDH, including 
their performance, optimal and operating conditions, and modifications 
to the LDH.

4.8. TMD-based MMMs
TMDs are layered compounds denoted by 2D MX2, where M de-

notes transition metal atoms from groups IV-VIII such as W, Mo, Nb, 
Zr, Ti, and X is a chalcogen (e.g., Te, Se, and S)[273-276]. Due to 
their diverse crystal structures, incredibly tiny thickness, and sheet 
structure, they have gained attention in electronics, catalysis, energy 
storage, and sensors[277-282]. Furthermore, TMDs have been ex-
tensively applied as fillers in fabricating high-performance composite 
membranes for gas separation research[283]. 2D TMDs are typically 
produced using a top-down exfoliation technique[277,284]. However, 
recently, bottom-up methods such as CVD have been developed to cre-
ate 2D TMDs with consistent layers and excellent surface area[285, 
286]. 

Table 10 provides a concise overview of selected TMD-based 
MMMs used for gas separations. Shen et al. used a drop-coating evap-
oration approach to manufacture the first-ever three-layered two-dimen-
sional Pebax/MoS2 MMMs to separate CO2/N2[287]. The CO2/N2 se-
lectivity was significantly improved in the gas permeation test con-
ducted using pure CO2 and N2 when utilizing MMMs, including 0.15 
wt% of MoS2. The selectivity of CO2/N2 was significantly enhanced 
from 44 to 93, while the CO2 permeability improved from 45 to 64 
barrer when compared to dense mix matrix films. 

Liu et al. created MMMs by including MoS2 nanosheets and 
Pebax-1657 to facilitate the separation of CO2/N2 gases[288]. Incorporating 
4.67 wt% MoS2 in the MMM resulted in the highest outcome, with the 
CO2 selectivity and permeability values for CO2/N2 being 91 and 67 
Barrer. These values represent a 1.46-fold rise in CO2 permeability and 
a 2.02-fold increase in CO2/N2 selectivity compared to the membrane 

Membrane 
material LDH Type 

Filler 
loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

Pebax-1657 AA-LDH 5 2 30 - - 790.0 31.0 [267]

Pebax-1657 ZIF-8@LDH 2 1 30 - - 1307.0 31.6 [269]

Pebax-1657 3D hollow 
CoNi-LDH 1 8 25 172.6 71.6 - - [270]

Pebax-1657 LDH NSs 10 4 25 279.6 76.4 - - [271]

EVA 12AA-LDH 1 1 30 119.2 10.0 - - [272]

Table 9. Evaluation of MMMs Created with Different Combinations of Polymer and LDH, Including Their Performance, Optimal and Operating 
Conditions, and Modifications to the LDH

Membrane 
material Material 

Filler 
loading 
(wt%)

Pressure
(bar)

Temperature
(°C) 

CO2/N2 gas pair CO2/CH4 gas pair
Ref.Permeability 

(Barrer) Selectivity Permeability 
(Barrer) Selectivity

Pebax-1657 CuBDC-ns/MoS2 2.50 4.0 35 123 69 123 18.00 [202]

Pebax MoS2 0.15 0.2 25 64 93 - - [287]

Pebax-1657 MoS2 4.76 2.0 30 67 91 - - [288]

ZIF-8 MoS2 10.00 5.0 25 - - 682 19.86 [289]

Table 10. Evaluation of MMMs Created with Different Combinations of Polymer and TMDs, Including Their Performance, Optimal and Operating
Conditions, and Modifications to the TMDs
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without any impurities. The enhancement was ascribed to the high at-
traction between CO2 adsorption and MoS2 nanosheets and the narrow 
gap between the layers (0.62 nm), which promotes the selective dif-
fusion of CO2 gas molecules over the membranes. The results proved 
the constructed MMMs' strong capability without any deterioration in 
their gas separation efficiency. MMMs, including TMD nanosheets as 
fillers, are currently in their development phase relative to other 2D 
materials. Despite the limited number of pertinent studies, further re-
search in the future is justified due to its benefits, including a wide 
range of crystal structures, strong mechanical properties, and excellent 
stability. 

5. Future perspectives of 2D materials-based MMMs 

This study presents a summary of the latest progress in the area of 
CO2 gas separation membranes utilizing 2D materials. Three distinct 
categories of membrane systems exist, specifically inorganic, poly-
meric, and MMMs. This research comprehensively analyzes the sig-
nificance of several categories of inorganic fillers in MMMs. Despite 
the limited availability of review reports on MMMs. Nowadays, 
MMMs with various inorganic fillers are the main focus of gas separa-
tion research. These membranes have the potential to offer significantly 
greater levels of permeability and selectivity compared to pure polymer 
membranes. The significant advancement in numerous novel categories 
of inorganic materials in recent years suggests that MMM has the po-
tential to become a future membrane. This review aims to analyze the 
existing literature on gas separation using various inorganic 2D materi-
als based on MMMs. The gas transport data for various 2D materials, 
including graphene, MOFs, COFs, HOFs, TMDs, MXene, and g-C3N4, 
were obtained from existing literature and subjected to a compre-
hensive evaluation. MMMs possess unique chemical and physical char-
acteristics, including an expansive surface area that obstructs gas trans-
mission and a strong affinity for CO2, which aids in the movement of 
CO2 gas. Two-dimensional materials have enabled MMMs to exceed 
Robeson's upper limit, a widely recognized compromise between gas 
selectivity and permeability. In addition, 2D materials have enhanced 
the plasticization resistance, mechanical stability, and aging qualities of 
MMMs due to their exceptional mechanical and chemical capabilities 
and outstanding compatibility with the polymer matrix.

The research on MMMs will continue until the development of in-
novative inorganic materials, as it is recognized that inorganic fillers 
are crucial in MMMs for attaining enhanced permeability and im-
proved selectivity in gas separation. There have been significant ad-
vancements in the laboratory testing of 2D material-based MMMs for 
membrane separation. Nevertheless, the field of 2D materials is cur-
rently in its nascent phase of investigation and has obstacles regarding 
their actual implementation in industrial gas separation. Firstly, to ach-
ieve optimal gas separation and enhance the membrane's long-term 
durability. Enhancing the interfacial compatibility of membranes has 
emerged as a significant problem, necessitating the achievement of a 
uniform dispersion of 2D microporous filler inside the polymer matrix. 
Nanosheets of COFs and MOFs exhibit enhanced compatibility be-

tween the matrix and filler compared to other 2D inorganic materials. 
Additionally, it demonstrates a notable level of permeability and excep-
tional separation capabilities in diverse gas separation applications, en-
compassing the separation of carbon dioxide. However, the issue of 
non-selective flaws and agglomeration persists. Additionally, 2D mate-
rials possess distinct features, including changing pore size and achiev-
ing homogeneous nanopores. When preparing novel 2D materials, it is 
crucial to consider enhancing their sieving performance, accurately reg-
ulating pore size, and ensuring stability in strong acids, high temper-
atures, and aqueous solutions. The technical challenges include in-
adequate long-term operational stability, limited scalability, suscepti-
bility to aging, and low resistance to pollutants. To address future chal-
lenges, it is vital to consider the following factors: enhance the techni-
ques used for producing membranes, lower the expenses associated 
with membrane materials, prolong their lifespan, promote environ-
mentally friendly membrane materials, and highlight the significance of 
compounding and modifying membrane materials. 

To summarize, the utilization of membrane-based CO2 separation 
technology can significantly impact environmental remediation and the 
production of clean energy. Research on developing 2D material-based 
MMMs for CO2 capture is currently highly active. Significant advance-
ments have been made in the production of MMMs using 2D micro-
porous materials that possess atomic thickness, surface chemical char-
acteristics, excellent ratios, and distinctive and uniform aperture 
distribution. Due to their small thickness and large lateral dimensions, 
the developing 2D materials are promising candidates for exploration 
as fillers in the production of MMMs. This paper offers an overview 
of the most recent two-dimensional-based MMMs designed for gas 
separation applications. The investigation's primary focus was enhanc-
ing the selectivity and permeability of 2D membranes, including gra-
phene, MOFs, COFs, HOFs, TMDs, MXene, and g-C3N4. Despite un-
resolved issues in practical applications, this technology remains a via-
ble method for creating membranes with consistently enhanced separa-
tion performance. This review aims to serve as a valuable reference for 
generating interest in 2D material-based MMMs and offering practical 
information for their application in membrane gas separation.
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