• Title/Summary/Keyword: 연소 배출물

Search Result 221, Processing Time 0.029 seconds

Experimental Study on the Argon Impurity Effect in the Pressure Drop of CO2 mixture flow (관내 이산화탄소 압력강하에 아르곤 불순물이 미치는 영향에 관한 실험적 연구)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8870-8878
    • /
    • 2015
  • During the carbon-dioxide capture and storage(CCS) process, $CO_2$ is captured from large point source, and then injected and stored in stable geological structure for thousands and more years. Inside the captured $CO_2$ flow, various impurities, such as $N_2$, $O_2$, argon, etc, are included inevitably. These impurities affect on the CCS process on various aspects. In this study, we designed and built experimental facility to evaluate the various impurity effect on the $CO_2$ pipeline flow, and analyzed the effect of argon ratio and pressure variation on the pressure drop of $CO_2$ flow. By comparing experimental data with 4 kinds of pressure drop model, we figured out and recommended the Cicchitti's model since it showed most accurate result among compared models in this study.

Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage (금속 산화물을 기반으로 한 이산화탄소 포집과 저장에 대한 최근 기술)

  • Oh, Hyunyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.97-110
    • /
    • 2020
  • CO2 capture and storage (CCS) is one of the promising technologies that can mitigate ever-growing emission of anthropogenic carbon dioxide and resultant climate change. Among them, chemical looping combustion (CLC) and calcium looping (CaL) are getting increasing attention recently as the prospective alternatives to the existing amine scrubbing. Both methods use metal oxides in the process and consist of cyclic reactions. Yet, due to their cyclic nature, they both need to resolve sintering-induced cyclic stability deterioration. Moreover, the structure of the metal oxides needs to be optimized to enhance the overall performance of CO2 capture and storage. Deposition of thin film coating on the metal oxide is another way to get rid of wear and tear during the sintering process. Chemical vapor deposition or atomic layer deposition are the well-known, established methods to form thin film membranes, which will be discussed in this review. Various effective recent developments on structural modification of metal oxide and incorporation of stabilizers for cyclic stability are also discussed.

Products and pollutants of half dried sewage sludge and waste plastic co-pyrolysis in a pilot-scale continuous reactor (반 건조 하수슬러지와 폐플라스틱 혼합물의 파일롯 규모 연속식 열분해에 의한 생산물과 발생 오염물질)

  • Kim, YongHwa;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • A continuous low temperature ($510^{\circ}C{\sim}530^{\circ}C$) pyrolysis experiment in a pilot-scale of 85.3 kg/hr was carried out by the mixed feedstock of half dried digested sewage sludge and waste plastics. As a result, the amount of pyrolysis gas generated was maximum 68.3% of input dry mass and scored $40.9MJ/Nm^3$ of lower heating value (LHV), and the percentage of air inflow caused by continuous pyrolysis was 19.6%. The oil was produced 4.2% of the input dry mass, and the LHV was 32.5 MJ/kg. The sulfur and chlorine contents, which could cause corrosion of the facility, were found to be 0.2% or more respectively. The carbide generated was 27.5% of the input dry mass which shows LHV of 10.2 MJ/kg, and did not fall under designated waste from the elution test. The concentration of carbon monoxide, sulfur oxides and hydrogen cyanide of emitted flu gas from pyrolysis gas combustion was especially high, and dioxin (PCDDs/DFs) was within the legal standards as $0.034ng-TEQ/Sm^3$. Among the 47 water pollutant contents of waste water generated from dry flue gas condensation, several contents such as total nitrogen, n-H extract and cyanide showed high concentration. Therefore, the merge treatment in the sewage treatment plants after pre-treatment could be considered.

Application of LCA Methodology on Lettuce Cropping Systems in Protected Cultivation (시설재배 상추에 대한 전과정평가 (LCA) 방법론 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.705-715
    • /
    • 2010
  • The adoption of carbon foot print system is being activated mostly in the developed countries as one of the long-term response towards tightened up regulations and standards on carbon emission in the agricultural sector. The Korean Ministry of Environment excluded the primary agricultural products from the carbon foot print system due to lack of LCI (life cycle inventory) database in agriculture. Therefore, the research on and establishment of LCI database in the agriculture for adoption of carbon foot print system is urgent. Development of LCA (life cycle assessment) methodology for application of LCA to agricultural environment in Korea is also very important. Application of LCA methodology to agricultural environment in Korea is an early stage. Therefore, this study was carried out to find out the effect of lettuce cultivation on agricultural environment by establishing LCA methodology. Data collection of agricultural input and output for establishing LCI was carried out by collecting statistical data and documents on income from agro and livestock products prepared by RDA. LCA methodology for agriculture was reviewed by investigating LCA methodology and LCA applications of foreign countries. Results based on 1 kg of lettuce production showed that inputs including N, P, organic fertilizers, compound fertilizers and crop protectants were the main sources of major emission factor during lettuce cropping process. The amount of inputs considering the amount of active ingredients was required to estimate the actual quantity of the inputs used. Major emissions due to agricultural activities were $N_2O$ (emission to air) and ${NO_3}^-$/${PO_4}^-$ (emission to water) from fertilizers, organic compounds from pesticides and air pollutants from fossil fuel combustion in using agricultural machines. The softwares for LCIA (life cycle impact assessment) and LCA used in Korea are 'PASS' and 'TOTAL' which have been developed by the Ministry of Knowledge Economy and the Ministry of Environment. However, the models used for the softwares are the ones developed in foreign countries. In the future, development of models and optimization of factors for characterization, normalization and weighting suitable to Korean agricultural environment need to be done for more precise LCA analysis in the agricultural area.

The Characterization of Incomplete Combustion Products in Open Burning (노천소각에서 배출되는 불완전연소생성물 특성 연구)

  • Jung, No-El;Heo, Sun-Hwa;Jo, Myeong-Ran;Kim, Hyung-Chun;Jang, Se-Kyung;Hong, Ji-Hyung;Dong, Jong-In;Lee, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • It is very important to investigate air pollutants emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S EPA and investigated emissions of CO, OC/EC, from household waste and biomass burning to estimate pollutant emissions by illegal incineration of biomass wastes. Emission factor of OC was estimated as 17.1 g/kg for rice strew, 23.5 g/kg for barley, 10.3 g/kg for corn stover, 4.3 g/kg for unseasoned wood, respectively. In case of EC, it was calculated as 1.6 g/kg for rice strew, 4.3 g/kg for barley, 1.4 g/kg for corn stover, 0.6 g/kg for unseasoned wood, respectively. Most of the pollutants emissions were emitted at the stage 1 and 2. In the stage 3, the pollutants concentration decreased gradually. To estimate emissions and build inventory for biomass burning, we need to know accurate activity data. We, therefore, used activity data of both survey results of previous study and statistical data of National Statistical Office. However, we need to perform additional experiments in the future to obtain more accurate activity data for various cases.

HCl Removal from Coal-derived Syngas by the Solid Sorbents (고체 흡수제를 이용한 석탄 합성가스 중 HCl 정제)

  • Baek, Jeom-In;Lee, Kisun;Wi, Yong-Ho;Choi, Dong Hyeok;Eom, Tae-Hyoung;Lee, Joong Beom;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.73.2-73.2
    • /
    • 2011
  • 석탄 합성가스 중에는 $H_2S$, HCl, $NH_3$와 같은 불순물이 포함되어 있다. 이러한 가스들은 오염가스 배출과 관련한 환경기준 준수와 터빈과 같은 설비의 보호를 위해 제거되어야 한다. 석탄 합성가스 중 HCl 농도는 탄종에 따라 다르기는 하지만 많게는 1000 ppmv 수준까지 존재한다. 합성가스를 이용하여 발전을 하는 경우 가스터빈 보호를 위해 HCl은 <3 ppmv 이하로 정제되어야 하고, 합성가스를 연료전지에 사용하고자 하는 경우에는 HCl을 <0.5 ppmv 수준까지, 화학원료로 사용하고자 하는 경우에는 <10 ppbv 수준까지 정제하여야 한다. 또한 HCl은 고온 탈황공정에 사용되는 흡수제의 활성에도 장기적으로 부정적인 영향을 주기 때문에 고온에서 HCl을 정제할 수 있는 흡수제가 필요하다. 본 연구에서는 알칼리금속을 활성물질로 사용하여 분무건조법으로 제조한 HCl 흡수제에 대해 물성 및 HCl과의 반응성을 살펴보았다. $300-500^{\circ}C$ 영역에서 K-계 및 Na-계 흡수제에 대해 고정층반응기에서 HCl 가스를 함유한 모사 합성가스를 이용하여 상압 조건에서 Cl 흡수능을 측정한 결과 15wt% 이상의 흡수능을 나타내었으며 반응온도가 높을수록 흡수능이 증가함을 알 수 있었다. XRD 분석을 통하여 Cl은 K 및 Na와 반응하여 KCl과 NaCl을 형성하면서 흡수됨을 알 수 있었다. 20 bar 조건에서 실험한 결과에서도 동일한 경향의 반응성을 나타내었으며 반응온도가 낮을수록 흡수능은 감소하지만 Cl을 더 낮은 농도로 정제할 수 있었다. 본 실험에 사용된 Na 및 K계 흡수제는 모두 연소 후 배가스 중 $CO_2$를 제거하기 위한 흡수제로 사용되는 고체 흡수제이다. 석탄화력발전소 배가스에 연계되어 $CO_2$ 회수실험에 사용되었던 사용 후 $CO_2$ 흡수제에 대해 HCl 흡수 실험을 수행한 결과에서도 우수한 HCl 제거 성능을 보여 주었다. 이로부터, 폐 $CO_2$ 흡수제의 HCl 흡수제로서의 활용가능성을 확인 하였다.

  • PDF

Numerical Analysis of Urea Injection Conditions in the Selective Non-Catalytic Reduction(SNCR) Process (SNCR 공정에서 요소수 분무 조건에 관한 수치 해석)

  • Jung, Yu-Jin;Jeong, Moon-Heon;Park, Ki-Woo;Hong, Sung-Gil;Jung, Jong-Hyeon;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.356-359
    • /
    • 2012
  • SNCR 기술은 SCR에 비해 탈질 효율은 떨어지지만 촉매없이 고온 배출가스에 NH3 또는 요소수를 직접 분사하여 질소와 물로 환원시키는 방법이므로 초기 투자비 및 운영비가 적어 최근 국내 대다수의 소각장, 산업용 보일러 등에 널리 적용되고 있다. 단, SNCR 기술은 급격한 온도 강하나 접근의 불용이성, 불균일한 혼합, 액적의 증발시간 지연, 불균일한 운전 조건 등의 영향을 크게 받으며, 특히 반응 온도가 가장 중요한 변수로서 최적 반응 온도 영역대가 약 800~$1,000^{\circ}C$라는 점에서 이상적인 반응 온도 조건을 찾아서 환원제를 분무하는 것이 매우 중요하다. 이에 본 연구에서는 열유동 전산해석을 통해 스토커식 소각로의 폐기물 성상별 화염 온도 분포를 예측하고 적정 반응 온도 영역을 확인하여 요소수 주입 고도를 선정, 폐기물 성상별 분무 조건을 확립하고자 수치 해석적 연구를 수행하였다. 폐기물 성상(고질/중질/저질 폐기물)별로 화염 온도를 예측한 결과, 최적 반응 온도 영역대가 약 800~$1,000^{\circ}C$, 폐기물 성상의 심한 변화 때문에 소각로의 효율적인 연소 조건 제어에 어려움 등을 고려하여 약 700~$1,000^{\circ}C$ 온도 영역대를 환원제 분무 온도로 선정하였다. 폐기물별로 발열량에 따른 화염 온도가 모두 다르기 때문에 환원제 분무 위치를 3지점으로 선정하여 각 지점별로 분무 운전 조건을 확립하였다.

  • PDF

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine (와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선)

  • Lee, Chang-Kyu;Huh, Yun-Kun;Seo, Sin-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

Development of a System for Measuring the Velocity of a Waste-gas Produced from a Melting Process (용해공정에서 배출되는 폐가스 유속 측정 시스템 개발)

  • Park, Jin Soo;Jung, Jae Hak;Sung, Su Whan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.340-347
    • /
    • 2008
  • In the case of a melting process, the velocity of waste-gas has been measured to produce the melt of an equal condition and to analyze the combustion situation of the fuel which was inputted in a furnace. Recently, there are many kinds of measuring equipments of gas-velocity on the market. But, the waste-gas produced from a melting process is high temperature, the slow speed and includes much dust. Existent measuring equipments are not suited to these conditions. Therefore, we made the measuring equipment of new method which is enough detailed to react on the slow speed and sustains in high temperature. As shown in the result of field test, the manufactured measuring equipment is so sensitive as to react on a small change of velocity and senses temperature change rapidly, we expect that this equipment helps in temperature control of a melting furnace.