DOI QR코드

DOI QR Code

Experimental Study on the Argon Impurity Effect in the Pressure Drop of CO2 mixture flow

관내 이산화탄소 압력강하에 아르곤 불순물이 미치는 영향에 관한 실험적 연구

  • Cho, Meang-Ik (Offshore CCS Research Unit, Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science and Technology) ;
  • Kang, Seong-Gil (Offshore CCS Research Unit, Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science and Technology) ;
  • Huh, Cheol (Ocean Science & Technology School, Korea Maritime and Ocean University) ;
  • Baek, Jong-Hwa (Offshore CCS Research Unit, Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science and Technology)
  • 조맹익 (한국해양과학기술원 선박해양플랜트연구소 해양CCS연구단) ;
  • 강성길 (한국해양과학기술원 선박해양플랜트연구소 해양CCS연구단) ;
  • 허철 (한국해양대학교 해양과학기술융합학과) ;
  • 백종화 (한국해양과학기술원 선박해양플랜트연구소 해양CCS연구단)
  • Received : 2015.11.13
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

During the carbon-dioxide capture and storage(CCS) process, $CO_2$ is captured from large point source, and then injected and stored in stable geological structure for thousands and more years. Inside the captured $CO_2$ flow, various impurities, such as $N_2$, $O_2$, argon, etc, are included inevitably. These impurities affect on the CCS process on various aspects. In this study, we designed and built experimental facility to evaluate the various impurity effect on the $CO_2$ pipeline flow, and analyzed the effect of argon ratio and pressure variation on the pressure drop of $CO_2$ flow. By comparing experimental data with 4 kinds of pressure drop model, we figured out and recommended the Cicchitti's model since it showed most accurate result among compared models in this study.

이산화탄소 포집 및 저장기술(Carbon Capture&Storage, CCS)은 대규모 배출원으로부터 이산화탄소를 포집하여 지중의 안전한 지질구조에 수천년 이상 안정적으로 저장하는 기술이다. 포집된 이산화탄소에는 필연적으로 불순물이 포함되어있으며, 특히 연소과정에 투입되는 공기를 구성하는 대표적인 물질들인 질소, 산소, 아르곤 등이 유입될 수 있다. 이러한 불순물들은 포집 이후의 전체 공정에 다양한 영향을 미치게 된다. 본 연구에서는 이산화탄소 혼합물의 관내유동에 다양한 불순물이 미치는 영향을 평가할 수 있는 실험 장치를 설계 및 제작하였으며 특히 이산화탄소 혼합물의 관내유동에 있어 아르곤 불순물이 미치는 영향을 평가하였다. 즉, 이산화탄소-아르곤 혼합물 2상유동의 압력강하와 유동양식을 실험적으로 분석하였으며, 이를 다양한 압력강하 모델 및 상관식과 비교하여 추후 이산화탄소 혼합물 관련 공정 설계 시 참고할 수 있는 기초 데이터를 제시하고자 하였다.

Keywords

References

  1. O. Eiken, P. Ringrose, C. Hermanrud, B. Nazarian, T. Torp, L. Hoier, "Lessons Learned from 14 years of CCS operation", Energy Procedia, pp. 5541-5548, Vol. 4, 2011. DOI: http://dx.doi.org/10.1016/j.egypro.2011.02.541
  2. M. Mitrovic, A. Malone, "Carbon Capture and Storage Demonstration Projects in Canada", Energy Procedia, pp. 5685-5691, Vol. 4, 2011. DOI: http://dx.doi.org/10.1016/j.egypro.2011.02.562
  3. B. Dressel, D. Deel, T. Rodosta, S. Plasynski, J. Litynski, L. Myer, "CCS Activities Being Performed by the US DOE", International J. Environment Research & Public Health. pp. 300-320, Vol. 8, 2011. DOI: http://dx.doi.org/10.3390/ijerph8020300
  4. H. Suzuki, A. Sahzabi, Y. Sugai, H. Yousefi, K. Sasaki, "Economical Considerations on CCS System for geoligical Uncertainty and Injection Failure", International J. Energy Economics and Policy. pp. 772-784, Vol. 4, 2014.
  5. Greenhouse Gas Inventory & Research Center of Korea. 2009 National Greenhouse Gas Report. 2011. Available From: http://www.gir.go.kr
  6. B. Metz, O. Davidson, H. Coninck, M. Loos, L. Meyer, Special Report on Carbon dioxide Capture and Storage. IPCC, Cambridge Univ Press, 2005.
  7. C. Huh, S. G. Kang, M. I. Cho, "Impact of Sulfur Dioxide Impurity on Process Desighn of CO2 Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter", J. Korean Society for Marine Environmental Engineering. pp. 187-197, Vol. 13, 2010.
  8. J. Pettersen, G. Koeijer, A. Hafner, "Construction of a CO2 Pipeline test rig for R&D and Operator training", Greenhouse Gas Technology-8. 2006.
  9. S. Munkejord, J. Jakobsen, J. Austegard, M. Molnvik, "Thermo-and Fluid-dynamical Modelling of two Phase Multi-Component Carbon Dioxide Mixtures", International Journal of Greenhouse Gas Control. pp. 589-596, Vol. 4, 2010. DOI: http://dx.doi.org/10.1016/j.ijggc.2010.02.003
  10. L. Cheng, G. Ribatski, J. Quiben, J. Thome, "New Prediction Method for CO2 Evaporation inside Tubes", International Journal of Heat and Mass Transfer. pp. 111-124, Vol. 51, 2008. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.04.002
  11. S. Grauso, R. Mastrullo, A. Mauro, G. Vanoli, "Two-phase adiabatic Pressure Gradients for R410a and CO2 in a Macro Channel", Experimental Thermal and Fluid Science. pp. 79-87, Vol. 52, 2014. DOI: http://dx.doi.org/10.1016/j.expthermflusci.2013.08.024
  12. NIST, NIST Reference Fluide Thermodynamic and Transport Properties-REFPROP 9.0, 2010.
  13. W. Owens, "Two-phase Pressure Gradient", International Development in Heat Transfer, Part II ASME, New York, 1961.
  14. A. Cicchitti, C. Lombardi, M. Silvestri, G. Solddaini, R. Zavalluilli, "Two-phase Cooling Experiments-Pressure Drop, Heat Transfer, and Burnout Measurement", Energia Nuclear. pp. 407-425, Vol. 7, 1960.
  15. D. Beattie, P. Whalley, "A Simple Two-phase Flow Frictional Pressure Drop Calculation Method", International Journal of Multiphase Flow. pp. 83-87, Vol. 8, 1982. DOI: http://dx.doi.org/10.1016/0301-9322(82)90009-X
  16. L. Friedel, "Improved Friction Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow", European Two-phase Flow Group Meeting, Paper E2, 1979.