• Title/Summary/Keyword: 연소도

Search Result 8,696, Processing Time 0.033 seconds

Combustion Performance Tests of Sub-scale Combustor for Liquid Rocket Engine (다종의 축소형 고압연소기 연소성능시험)

  • Kim Seung-Han;Seo Seonghyeon;Moon Il-Yoon;Seol Woo-Seok;Cho Gwang-Rae;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.259-264
    • /
    • 2004
  • The critical component of combustor having high combustion efficiency for high performance liquid rocket engine is injector. The results of design and hot firing tests of six sub-scale combustors which have respectively an impinging type injector(1ea.), an bi-propellant swirl closed injector(1ea.), and hi-propellant swirl mixed injector(4ea.) were described in this paper. The combustion test were successfully performed. The combustion efficiency have higher value than predicted value and high frequency combustion instability does not occur.

  • PDF

Measuring Burning rate of Solid propellent using Small Propulsion Motor (소형 추진기관을 이용한 고체 추진제의 연소속도 측정)

  • Jeong, Chul-Young;Kim, Han-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.228-231
    • /
    • 2011
  • Burning rate of a propellent is an essential factor when designing a propulsion system. In order to come up with burning rate, first we need to design and build propellent grain to get neutral pressure curve. Then check the pressure with ground test and calculate the burning rate using burning rate equation. This burning rate is then compared to the burning rate of a propellent which was resulted from making a standardized specimen and combusting it using a strand burner. An accurate burning rate is calculated after comparing those two burning rates. For this study, compact propulsion system was designed, produced, tested and analyzed in order to get burning rates, an essential factor in propulsion system design, in an effective way.

  • PDF

Combustion Characteristics of Al powder with Water Suspension (Al 분말과 Water 혼합물의 연소특성 연구)

  • Ki, Wan-Do;Kim, Kwang-Yeon;Shmelev, Vladimir;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.157-162
    • /
    • 2012
  • The basic study for combustion characteristics of micron-sized aluminum powder with water suspension was carried out. Under atmospheric pressure, the combustion characteristics of aluminum powder with water suspension was studied by adjust the equivalent ratio and the density of a mixture which effect on burning rate. Based on atmospheric pressure's result, the device for the combustion characteristics of aluminum powder with water suspension under high-pressure environment was developed. In the pressure range from 2 to 50 atm the effect of pressure to burning rate was same as the case of nano-aluminum with water suspension, but the pressure range from 50 to 70 atm the sharp increase in burning rate was observed. In the experiment of varying the equivalence ratio, the combustion did not proceed in the condition of excess oxidizer (eq = 1.5).

  • PDF

Development of the combustion noise index and control algorithm through signal processing of in-cylinder pressure for a diesel engine (연소압력 신호처리를 통한 디젤엔진 연소음 지수 및 제어 알고리듬 개발)

  • Jin, Jaemin;Lee, Dongchul;Jung, Insoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • To control and improve a combustion behavior of an engine, various studies for the in-cylinder pressure have been consistently carried out. In this paper, the level of the combustion noise for a diesel engine is estimated from the in-cylinder pressure and defined as the combustion noise index. The combustion noise index is calculated from the FFT(Fast Fourier Transform) of the in-cylinder pressure and its validity is verified. The control system based on the combustion noise index is developed and implemented in a vehicle. A number of injection parameters are controlled to meet the desired combustion noise index, and the combustion noise of a vehicle is improved up to 4.0 dB(A) in the specified frequency band.

Experimental Study on the Combustion Stability of Full Scale Rocket Combustor (실물형 액체로켓 연소기의 연소안정성에 대한 시험적인 고찰)

  • Lee Kwang-Jin;Seo Seong-Hyeon;Kang Dong-Hyeuk;Song Ju-Young;Lim Byoung-Jik;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.240-246
    • /
    • 2005
  • A series of combustion tests of a 30-tonf-class full scale liquid rocket thrust chamber under development has been carried out to verify its design. The test results revealed decent performance in the aspects of efficiency. The combustion stability is one of the most important parameters of liquid rocket engine in addition to the efficiency. Assessment tests of combustion stability must be accomplished to confirm the possibility of combustion instability due to spontaneous or external disturbances. The combustion stability rating tests of the full scale thrust chamber with temporary baffles made of stainless steel were carried out utilizing pulse guns to estimate combustion stability characteristics. The tests results show highly stable combustion stability characteristics. The outcome acquired from the present experimental study will be used to design an actively cooled baffle that can survive for the life time operation of the thrust chamber.

  • PDF

Combustion Test Results of Regenerative Cooling Combustor for 30 tonf-class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 재생냉각 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.133-137
    • /
    • 2008
  • Results of combustion tests performed for a regenerative cooling combustor of a 30 tonf-class liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. The combustion chamber is composed of mixing head, baffle injector, and regenerative cooling chamber. The hot firing tests were performed at design and off-design points. The test results show that the combustion characteristic velocity is in the range of 1738${\sim}$1751 m/sec and the specific impulse of the combustion chamber is in the range of 253${\sim}$270 sec. The peak of combustion characteristic velocity and specific impulse for this combustor is shown at mixture ratio of 2.35 and 2.5, respectively.

  • PDF

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Experimental Study on Combustion Performances with Variations in Main Air-ratio and Dilution hole-pattern (주연소 영역 공기배분 및 희석공기공 배치에 따른 연소 성능 변화 연구)

  • Kim, Minkuk;Kim, Hanseok;Jung, Seungchai;Park, Heeho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.254-257
    • /
    • 2017
  • As a part of the development of aircraft gas turbines, combustion performance tests have been conducted in the single combustor sector. The effects of change in the amount of air supplied to the main combustion zone to the performance of the combustor, such as a pollutant emission, a liner temperature distribution and an exit temperature patterns, were studied. Emissions of CO and NOx increased with the main air-ratio and exit temperature pattern was improved. When changing the pattern of the dilution holes, it was shown that the temperature patterns on the exit plane of the combustor and the surface of liner changed depending on the main flame structure and mixing with diluent air. These observations will be applied to combustor liner designs to improve combustor durability and emissions reduction performance.

  • PDF

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.