• Title/Summary/Keyword: 연산 효율

Search Result 2,610, Processing Time 0.03 seconds

Adults' perception of mathematics: A narrative analysis of their experiences in and out of school (수학에 대한 성인들의 인식: 학교 안팎에서의 수학적 경험에 대한 내러티브 탐구)

  • Cho, Eun Young;Kim, Rae Young
    • The Mathematical Education
    • /
    • v.61 no.3
    • /
    • pp.477-497
    • /
    • 2022
  • The rapidly changing world calls for reform in mathematics education from lifelong learning perspectives. This study examines adults' perception of mathematics by reflecting on their experiences of mathematics in and out of school in order to understand what the current needs of adults are. With the two questions: "what experiences do participants have during their learning of mathematics in schools?" and "how do they perceive mathematics in their current life?", we analyzed the semi-structured interviews with 10 adults who have different sociocultural backgrounds using narrative inquiry methodology. As a result, participants tended to accept school mathematics as simply a technique for solving computational problems, and when they had not known the usefulness of mathematical knowledge, they experienced frustration with mathematics in the process of learning mathematics. After formal education, participants recognized mathematics as the basic computation skill inherent in everyday life, the furniture of their mind, and the ability to efficiently express, think, and judge various situations and solve problems. Results show that adults internalized school education to clearly understand the role of mathematics in their lives, and they were using mathematics efficiently in their lives. Accordingly, there was a need to see school education and adult education on a continuum, and the need to conceptualize the mathematical abilities required for adults as mathematical literacy.

A Hybrid Blockchain-Based E-Voting System with BaaS (BaaS를 이용한 하이브리드 블록체인 기반 전자투표 시스템)

  • Kang Myung Joe;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.253-262
    • /
    • 2023
  • E-voting is a concept that includes actions such as kiosk voting at a designated place and internet voting at an unspecified place, and has emerged to alleviate the problem of consuming a lot of resources and costs when conducting offline voting. Using E-voting has many advantages over existing voting systems, such as increased efficiency in voting and ballot counting, reduced costs, increased voting rate, and reduced errors. However, centralized E-voting has not received attention in public elections and voting on corporate agendas because the results of voting cannot be trusted due to concerns about data forgery and modulation and hacking by others. In order to solve this problem, recently, by designing an E-voting system using blockchain, research has been actively conducted to supplement concepts lacking in existing E-voting, such as increasing the reliability of voting information and securing transparency. In this paper, we proposed an electronic voting system that introduced hybrid blockchain that uses public and private blockchains in convergence. A hybrid blockchain can solve the problem of slow transaction processing speed, expensive fee by using a private blockchain, and can supplement for the lack of transparency and data integrity of transactions through a public blockchain. In addition, the proposed system is implemented as BaaS to ensure the ease of type conversion and scalability of blockchain and to provide powerful computing power. BaaS is an abbreviation of Blockchain as a Service, which is one of the cloud computing technologies and means a service that provides a blockchain platform ans software through the internet. In this paper, in order to evaluate the feasibility, the proposed system and domestic and foreign electronic voting-related studies are compared and analyzed in terms of blockchain type, anonymity, verification process, smart contract, performance, and scalability.

The Design and implementation of parallel processing system using the $Nios^{(R)}$ II embedded processor ($Nios^{(R)}$ II 임베디드 프로세서를 사용한 병렬처리 시스템의 설계 및 구현)

  • Lee, Si-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.97-103
    • /
    • 2009
  • In this thesis, we discuss the implementation of parallel processing system which is able to get a high degree of efficiency(size, cost, performance and flexibility) by using $Nios^{(R)}$ II(32bit RISC(Reduced Instruction Set Computer) processor) embedded processor in DE2-$70^{(R)}$ reference board. The designed Parallel processing system is master-slave, shared memory and MIMD(Mu1tiple Instruction-Multiple Data stream) architecture with 4-processor. For performance test of system, N-point FFT is used. The result is represented speed-up as follow; in the case of using 2-processor(core), speed-up is shown as average 1.8 times as 1-processor's. When 4-processor, the speed-up is shown as average 2.4 times as it's.

A new warp scheduling technique for improving the performance of GPUs by utilizing MSHR information (GPU 성능 향상을 위한 MSHR 정보 기반 워프 스케줄링 기법)

  • Kim, Gwang Bok;Kim, Jong Myon;Kim, Cheol Hong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.3
    • /
    • pp.72-83
    • /
    • 2017
  • GPUs can provide high throughput with latency hiding by executing many warps in parallel. MSHR(Miss Status Holding Registers) for L1 data cache tracks cache miss requests until required data is serviced from lower level memory. In recent GPUs, excessive requests for cache resources cause underutilization problem of GPU resources due to cache resource reservation fails. In this paper, we propose a new warp scheduling technique to reduce stall cycles under MSHR resource shortage. Cache miss rates for each warp is predicted based on the observation that each warp shows similar cache miss rates for long period. The warps showing low miss rates or computation-intensive warps are given high priority to be issued when MSHR is full status. Our proposal improves GPU performance by utilizing cache resource more efficiently based on cache miss rate prediction and monitoring the MSHR entries. According to our experimental results, reservation fail cycles can be reduced by 25.7% and IPC is increased by 6.2% with the proposed scheduling technique compared to loose round robin scheduler.

Low-Power Streamable AI Software Runtime Execution based on Collaborative Edge-Cloud Image Processing in Metaverse Applications (에지 클라우드 협동 이미지 처리기반 메타버스에서 스트리밍 가능한 저전력 AI 소프트웨어의 런타임 실행)

  • Kang, Myeongjin;Kim, Ho;Park, Jungwon;Yang, Seongbeom;Yun, Junseo;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1577-1585
    • /
    • 2022
  • As the interest in the 4th industrial revolution and metaverse increases, metaverse with multi edge structure is proposed and noted. Metaverse is a structure that can create digital doctor-like system through a large amount of image processing and data transmission in a multi edge system. Since metaverse application requires calculating performance, which can reconstruct 3-D space, edge hardware's insufficient calculating performance has been a problem. To provide streamable AI software in runtime, image processing, and data transmission, which is edge's loads, needs to be lightweight. Also lightweight at the edge leads to power consumption reduction of the entire metaverse application system. In this paper, we propose collaborative edge-cloud image processing with remote image processing method and Region of Interest (ROI) to overcome edge's power performance and build streamable and runtime executable AI software. The proposed structure was implemented using a PC and an embedded board, and the reduction of time, power, and network communications were verified.

Association Analysis of Product Sales using Sequential Layer Filtering (순차적 레이어 필터링을 이용한 상품 판매 연관도 분석)

  • Sun-Ho Bang;Kang-Hyun Lee;Ji-Young Jang;Tsatsral Telmentugs;Kwnag-Sup Shin
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.213-224
    • /
    • 2022
  • In logistics and distribution, Market Basket Analysis (MBA) is used as an important means to analyze the correlation between major sales products and to increase internal operational efficiency. In particular, the results of market basket analysis are used as important reference data for decision-making processes such as product purchase prediction, product recommendation, and product display structure in stores. With the recent development of e-commerce, the number of items handled by a single distribution and logistics company has rapidly increased, And the existing analytical methods such as Apriori and FP-Growth have slowed down due to the exponential increase in the amount of calculation and applied to actual business. There is a limit to examining important association rules to overcome this limitation, In this study, at the Main-Category level, which is the highest classification system of products, the utility item set mining technique that can consider the sales volume of products together was used to first select a group of products mainly sold together. Then, at the sub-category level, the types of products sold together were identified using FP-Growth. By using this sequential layer filtering technique, it may be possible to reduce the unnecessary calculations and to find practically usable rules for enhancing the effectiveness and profitability.

A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data (불균형 데이터 처리를 통한 소프트웨어 요구사항 분류 모델의 성능 개선에 관한 연구)

  • Jong-Woo Choi;Young-Jun Lee;Chae-Gyun Lim;Ho-Jin Choi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.295-302
    • /
    • 2023
  • Software requirements written in natural language may have different meanings from the stakeholders' viewpoint. When designing an architecture based on quality attributes, it is necessary to accurately classify quality attribute requirements because the efficient design is possible only when appropriate architectural tactics for each quality attribute are selected. As a result, although many natural language processing models have been studied for the classification of requirements, which is a high-cost task, few topics improve classification performance with the imbalanced quality attribute datasets. In this study, we first show that the classification model can automatically classify the Korean requirement dataset through experiments. Based on these results, we explain that data augmentation through EDA(Easy Data Augmentation) techniques and undersampling strategies can improve the imbalance of quality attribute datasets, and show that they are effective in classifying requirements. The results improved by 5.24%p on F1-score, indicating that handling imbalanced data helps classify Korean requirements of classification models. Furthermore, detailed experiments of EDA illustrate operations that help improve classification performance.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

Optimized Implementation of PIPO Lightweight Block Cipher on 32-bit RISC-V Processor (32-bit RISC-V상에서의 PIPO 경량 블록암호 최적화 구현)

  • Eum, Si Woo;Jang, Kyung Bae;Song, Gyeong Ju;Lee, Min Woo;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • PIPO lightweight block ciphers were announced in ICISC'20. In this paper, a single-block optimization implementation and parallel optimization implementation of PIPO lightweight block cipher ECB, CBC, and CTR operation modes are performed on a 32-bit RISC-V processor. A single block implementation proposes an efficient 8-bit unit of Rlayer function implementation on a 32-bit register. In a parallel implementation, internal alignment of registers for parallel implementation is performed, and a method for four different blocks to perform Rlayer function operations on one register is described. In addition, since it is difficult to apply the parallel implementation technique to the encryption process in the parallel implementation of the CBC operation mode, it is proposed to apply the parallel implementation technique in the decryption process. In parallel implementation of the CTR operation mode, an extended initialization vector is used to propose a register internal alignment omission technique. This paper shows that the parallel implementation technique is applicable to several block cipher operation modes. As a result, it is confirmed that the performance improvement is 1.7 times in a single-block implementation and 1.89 times in a parallel implementation compared to the performance of the existing research implementation that includes the key schedule process in the ECB operation mode.

A Study on the Optimization of Fire Awareness Model Based on Convolutional Neural Network: Layer Importance Evaluation-Based Approach (합성곱 신경망 기반 화재 인식 모델 최적화 연구: Layer Importance Evaluation 기반 접근법)

  • Won Jin;Mi-Hwa Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.444-452
    • /
    • 2024
  • This study proposes a deep learning architecture optimized for fire detection derived through Layer Importance Evaluation. In order to solve the problem of unnecessary complexity and operation of the existing Convolutional Neural Network (CNN)-based fire detection system, the operation of the inner layer of the model based on the weight and activation values was analyzed through the Layer Importance Evaluation technique, the layer with a high contribution to fire detection was identified, and the model was reconstructed only with the identified layer, and the performance indicators were compared and analyzed with the existing model. After learning the fire data using four transfer learning models: Xception, VGG19, ResNet, and EfficientNetB5, the Layer Importance Evaluation technique was applied to analyze the weight and activation value of each layer, and then a new model was constructed by selecting the top rank layers with the highest contribution. As a result of the study, it was confirmed that the implemented architecture maintains the same performance with parameters that are about 80% lighter than the existing model, and can contribute to increasing the efficiency of fire monitoring equipment by outputting the same performance in accuracy, loss, and confusion matrix indicators compared to conventional complex transfer learning models while having a learning speed of about 3 to 5 times faster.