• Title/Summary/Keyword: 역학적 간극

Search Result 100, Processing Time 0.022 seconds

Undrained Shear Behavior of Sandy Soil Mixtures (사질혼합토의 비배수 전단거동 특성)

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.13-24
    • /
    • 2011
  • In the part of geotechnical engineering, soils are classified as either the coarse grained soil or the fine-grained soil following the fine content($F_c$=50%) according to the granularity, and appropriate design codes are used respectively to represent their mechanical behaviour. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay. In this study, several monotonic undrained shear tests were carried out on Silica sand fine mixtures with various proportions, and a wide range of soil structures, ranging from one with sand dominating the soil structure to one with fines controlling the behaviour, were prepared using compaction method or pre-consoldation methods in prescribed energy. The shear strength of mixtures below the threshold fines content is observed that as the fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. Then, by using the concept of fines content and granular void ratio, the monotonic shear strength of the mixtures was estimated. It was found that the shear behavior of mixtures is greatly dependent on the skeleton structure of sand particles.

Hydro-mechanical Behavior of Partially Saturated Soil Slopes under Rainfall (강우시 불포화토 사면에서의 수리역학적 거동 해석에 관한 연구)

  • Kim, Jae-Hong;Im, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.69-78
    • /
    • 2012
  • Conventional numerical analysis for rainfall-induced slope stability has been estimated by separating seepage and stress-strain behavior, respectively. Many researchers' models from commercial softwares and literatures define that partially saturated permeability is the only function of degree of saturation (or matrix suction) and then they do not consider hydraulic-mechanical characteristics for the analysis. However, in practice, the water flow processes in a deformable soil are influenced by soil skeleton movement and the pore water pressure changed due to seepage will lead to changes in stress and to deformation of a soil. The relationship between seepage and soil behavior causes a change of partially saturated permeability as well as saturated permeability with the lapse of time. Instability of partially saturated soil slopes due to infiltration would be analyzed from reduction of negative pore water pressure calculating the process of water flow based on predicted partially saturated permeability. Therefore, partially saturated permeability should be defined by the function of degree of saturation (or matric suction) and porosity. The paper presents the comparison between staggered and monolithic coupled analysis regarding seepage and stress deformation problems. As a result, the decrease in matric suction on soil slope from monolithic analysis is slower than that from staggered analysis.

Effect on Matric Suction in Soils due to Hysteretic Soil Water Characteristic Curves (함수특성곡선 이력현상이 지반 내 모관흡수력에 미치는 영향)

  • Kim, Jae-Hong;Hwang, Woong-Ki;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.91-100
    • /
    • 2012
  • Soil-water characteristic curves (SWCCs), which represent a physical property in partially saturated soils, show the relation between volumetric water content and matric suction. The SWCCs exhibit hysteresis during wetting and drying, however experimental expressions used to describe SWCCs have generally ignored the hysteresis. In addition, the shape of SWCC may depend on the void ratio which is changed by soil skeleton deformations or hysteretic behavior under various loading conditions. Hence, it is necessary to understand, both empirically and analytically, the relationship between soil skeleton deformations and the SWCCs of various soils. The typical SWCCs experimentally have drying, wetting, and the second drying curve. The measurement of a complete set of hysteretic curves is severely time-consuming and difficult works, then the first drying curve of SWCC is generally determined to estimate the hydraulic conductivity and shear strength function of partially saturated soils. This paper presents the hydraulic-mechanical behavior of partially saturated soils (weathered soil and silty soil) for volume changes and hysteresis in SWCCs regarding the difference between the first drying and wetting curve.

Theoretical Formulation of Porous Medium Behavior Depending on Degree of Saturation (포화도에 따른 다공질 매체 거동의 이론적 정식화)

  • Park, Tae Hyo;Jung, So Chan;Kim, Won Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 2001
  • The behavior of porous medium is modeled by linear thermoporoelastic behavior, linear poroviscoelastic behavior, poroplastic behavior, and poroviscoplastic behavior, etc. The behavior has, in general, a complicated aspect which makes a mechanical description of the problem with time. Constitutive modeling for deformation behavior of porous medium with coupling effects is needed since there is interaction between the constituents in pores with a relative velocity to each other. In this work, it is explained 3-dimensional behavior depending on degree of saturation for porous medium composed of homogeneous, isotropic materials. It is obtained the governing equations based on continuum porous mechanics. In addition, it is developed constitutive model which can be understood of behavior for porous medium which can be understood, analysed behavior of porous medium. It can be accomplished exact analysis and prediction of behavior in porous medium. The behavior for porous medium is analysed exactly, and the prediction of deformation behavior is accomplished. Consequently, it will be basis to analyze 3-dimensional behavior in municipal solid waste landfill, and the practical using of porous medium ground which are composed of nonhomogeneous, anisotropic materials can be done widely.

  • PDF

A Fully Coupled Hydrogeomechanical Numerical Analysis of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability (사면 내의 지하수 유동과 사면의 안정성에 대한 강수 영향의 완전 연동된 수리지질역학적 수치 해석)

  • 김준모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.5-16
    • /
    • 2002
  • A hydrogeomechanical numerical model is presented to evaluate rainfall impacts on groundwater flow in slopes and slope stability. This numerical model is developed based on the fully coupled poroelastic governing equations for groundwater flow in deforming variably saturated geologic media and the Galerkin finite element method. A series of numerical experiments using the model developed are then applied to an unsaturated slope under various rainfall rates. The numerical simulation results show that the overall hydromechanical slope stability deteriorates, and the potential failure nay initiate from the slope toe and propagate toward the slope crest as the rainfall rate increases. From the viewpoint of hydrogeology, the pressure head and hence the total hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. From the viewpoint of geomechanics, the horizontal displacement increases, and the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the rainfall rate increases. As a result, the overall deformation intensifies toward the slope toe, and the unstable zone, in which the factor of safety against shear failure is less than 1, becomes thicker near the slope toe and propagates from the slope toe toward the slope crest. The numerical simulation results also suggest that the potential tension failure is likely to occur within the slope between the potential shear failure surface and the ground surface.

Analysis of Consolidation and Shear Characteristics for the Kwangyang Bay Clay (실내시험을 통한 광양만 점토의 압밀 및 전단특성분석)

  • 이영휘;김용준;김대길
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.151-160
    • /
    • 1999
  • A series of laboratory tests for the marine clay sampled under the sea of Kwangyang bay have been conducted. The main types of tests are the general index property tests, the oedometer tests and the triaxial compression tests in both undrained(CIU) and drained(CID) conditions. The clayey samples, classified as CL, CH with natural water content of 38.3~84.6% and liquidity index of 0.71~0.98, are in the normally consolidated state with O.C.R. of 1.0l~l.60. The undrained stress path from CIU tests can be normalized with isotropic consolidation pressure$(p_0)$ and equal shear strain contour is linear passing through the origin in the (q, p) plot. The undrained shear strain is found to be the only function of the stress ratio($\eta$) and linear with intercept in the ($\varepsilon/\eta,\eta$) plot. The built-up pore pressure normalized with pc is also linear with respect to $\eta$. and its slope is defined by ´C´ as a pore pressure parameter. Equations to predict the undrained stress path and the shear strain are proposed. It is proved that the proposed equations give better agreements to the measured values than the Cam-clay theories. The failure points of the stress path are located on the same C.S.L. in (q, p) plot during both CIU and CID tests, which justifies the concept of critical state theory.

  • PDF

Detailed Flow Analysis of Helicopter Shrouded Tail Rotor in Hover Using an Unstructured Mesh Flow Solver (비정렬격자계를 이용한 헬리콥터 덮개 꼬리 로터의 제자리 비행 유동 해석)

  • Lee, Hui Dong;Gwon, O Jun;Gang, Hui Jeong;Ju, Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • Detailed flow of a shrouded tail rotor in hover is studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. Numerical simulation is made for a single blade attached to the center body and guide by the duct by imposing a periodic boundary condition between adjacent rotor blades. The results show that the performance of an isolated rotor without shroud compares well with experiment. In case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

Numerical Investigation of Flow Structures near Various Nozzle Exit Geometries of the Air Bearing (공기베어링의 노즐 형상 변화에 따른 출구면 근방의 유동구조에 대한 수치해석)

  • Park, Byung Ho;Han, Yong Oun;Park, Sang-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 2014
  • To investigate pressure distributions on the shaft surface of the air bearing, the commercial CFD software was employed to study three different nozzle geometries to improve the nozzle performance: general drill-shaped, matched cube-shaped and trimmed exit nozzles. Under the influence of stagnation point, the maximum pressure was observed at the center of shaft surface for all cases. Owing to the blocking effect of a fine gap between the shaft surface and the nozzle exit, the drill-shaped nozzle has the rapid local pressure increase near the nozzle exit corner, generating the ring vortex in the radial direction within pressure ratio of 6.92, and its pressure becomes negative in a certain range of downstream. In comparison, the contoured nozzle showed a local pressure increase in the measured range of pressure ratios, but a negative pressure appeared within the pressure ratio of about 10. The trimmed nozzle was seemed to extend the high pressure zone near the stagnation point in the radial direction substantially, and no negative pressure was appeared in the whole range. Based on these observations, it is found that trimming nozzle exit becomes more effective for improving the performance than modifying the nozzle inside contour.

Aerodynamic Design and Numerical Study of a Propane-Refrigerant Centrifugal Compressor for LNG Plant (LNG 플랜트용 프로판 냉매 원심압축기의 공력설계 및 전산해석적 연구)

  • Park, Joo-Hoon;Lee, Won-Suk;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Yoon-Pyo;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.781-787
    • /
    • 2011
  • We design a four-stage propane-refrigerant centrifugal compressor for an LNG plant. Using a commercial code, we aerodynamically designed the compressor at each design point of the corresponding stages. We estimated the one-dimensional aerodynamic design output and the three-dimensional shape of the impeller flow passage via three-dimensional flow analysis. In particular, we discuss in detail the flow characteristics of the impeller and the vaneless diffuser passages of the fourth-stage compressor in terms of the velocity fields, the pressure, and the entropy distributions of the flow passages. We include the flow effects of the tip clearance flow, because at this stage the rotating speed and total inlet pressure are higher than those at the other compressor stages are. We carried out performance tests of the designed compressor stages using propane as a refrigerant in the LNG cycle. The practical evaluation could lead to design enhancements in the future.