DOI QR코드

DOI QR Code

Hydro-mechanical Behavior of Partially Saturated Soil Slopes under Rainfall

강우시 불포화토 사면에서의 수리역학적 거동 해석에 관한 연구

  • Kim, Jae-Hong (Dept. of Civil Engineering, Chonbuk National Univ.) ;
  • Im, Jae-Seong (Dept. of Civil & Environmental Engineering, Dankook Univ.) ;
  • Park, Seong-Wan (Dept. of Civil & Environmental Engineering, Dankook Univ.)
  • 김재홍 (전북대학교 토목공학과) ;
  • 임재성 (단국대학교 토목환경공학과) ;
  • 박성완 (단국대학교 토목환경공학과)
  • Received : 2012.07.06
  • Accepted : 2012.11.12
  • Published : 2012.11.28

Abstract

Conventional numerical analysis for rainfall-induced slope stability has been estimated by separating seepage and stress-strain behavior, respectively. Many researchers' models from commercial softwares and literatures define that partially saturated permeability is the only function of degree of saturation (or matrix suction) and then they do not consider hydraulic-mechanical characteristics for the analysis. However, in practice, the water flow processes in a deformable soil are influenced by soil skeleton movement and the pore water pressure changed due to seepage will lead to changes in stress and to deformation of a soil. The relationship between seepage and soil behavior causes a change of partially saturated permeability as well as saturated permeability with the lapse of time. Instability of partially saturated soil slopes due to infiltration would be analyzed from reduction of negative pore water pressure calculating the process of water flow based on predicted partially saturated permeability. Therefore, partially saturated permeability should be defined by the function of degree of saturation (or matric suction) and porosity. The paper presents the comparison between staggered and monolithic coupled analysis regarding seepage and stress deformation problems. As a result, the decrease in matric suction on soil slope from monolithic analysis is slower than that from staggered analysis.

강우로 인한 사면의 안정성 평가를 하기 위한 일반적인 해석 방법들은 강우 침투와 흙의 거동 해석을 개별적으로 구분하여 수행하고 있다. 따라서 상용화된 프로그램과 기 개발된 여러 연구자들의 모델들은 불포화 투수계수를 함수비(또는 흡수력)만의 함수로 정의되어 수리-역학적인 특징을 동시에 고려하지 못하고 있는 실정이다. 그러나 실제 침투수는 사면의 거동을 발생시키고, 지반의 토립자들은 다시 재배열되며 이러한 구성관계에 의해 포화 투수계수 뿐만 아니라 불포화 투수계수도 시간에 따라 변화하게 된다. 강우로 인한 사면의 불안정성은 예측된 불포화 투수계수 값을 근간으로 사면 내 흡수력 감소를 계산함으로써 평가되고 불포화 투수계수는 함수비와 간극률의 함수로 정의되어야 한다. 본 논문에서는 기존의 단계적으로 연결된 해석방법이 불포화 지반에서 침투수를 고려하고 흙의 변형을 예측하는 동시연동해석 결과보다 사면 내부에서 예측되는 흡수력의 변화가 시간에 따라 상대적으로 빠르게 감소함을 보여주고 있다.

Keywords

References

  1. Alonso, E., Gens A., and Lloret, A. (1995). "Effect of rain infiltration on the stability of slopes." Proceeding of the International Conference on Unsaturated Soils, Paris, pp.241-249.
  2. Borja, R. I. (2004), "Cam-Clay Plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media," Computer Methods in Applied Mechanics and Engineering, Vol.193, pp.5301-5338. https://doi.org/10.1016/j.cma.2003.12.067
  3. Ching, R. K. H., Sweeney, J., and Fredlund, D. G. (1984). "Increase in Factor of Safety due to Soil Suction for Two Hong Kong Slopes." Proceeding 4th International Symposium Landslides, pp.617-623.
  4. Cho, S. E. and Lee, S. R. (2000), "Slope stability analysis of unsaturated soil slopes due to rainfall infiltration", Journal of Korean Geotechnical Society(KGS), Vol.16, No.1, pp.51-64.
  5. Cho, S. E. and Lee, S. R. (2001). "Instability of unsaturated soil slopes due to infiltration." Computers and geotechnics, 28(3), pp. 185-208. https://doi.org/10.1016/S0266-352X(00)00027-6
  6. Coussy, O. (2004). Poromechanics, John Wiley and Sons, New York, pp.45-51, 157-168.
  7. Geo-Slope. Version 7.13, SEEP/W User's guide, International Ltd., Calgery, Canada, 2007.
  8. Hughes, T. J. R. (1987), The Finite Element Method, Prentice-Hall, New Jersey, pp.1-51, 57-75.
  9. Khaleel, R. (2010), "Extension of Kozeny-Carman Model for Estimating Unsaturated Hydraulic Conductivity," Soil Science Society of America Journal, Vol.74, pp.1996-2009. https://doi.org/10.2136/sssaj2010.0167
  10. Kim, J. H., Park, S. W., Jeong, S. S., and Yoo, J. H. (2002), "A study of stability analysis on unsaturated weathered slopes based on rainfall-induced wetting", Journal of KGS, Vol.18, No.2, pp.123-136.
  11. Kim, J. (2010), "Plasticity modeling and coupled finite element analysis for partially-saturated soils," Ph.D. Thesis, University of Colorado, Boulder, US.
  12. Kim, J., Jeong, S., Park, S., and Sharma, J. (2004). "Influence of rainfall-induced wetting on the stability of slopes in weathered soils." Engineering Geology, 75(3-4), pp.251-262. https://doi.org/10.1016/j.enggeo.2004.06.017
  13. Krahn, J., Fredlund, D. G., and Klassen, M. J. (1989). "Effect of soil suction on slope stability at Notch Hill." Canadian Geotechnical Journal, 26(2), pp.269-278. https://doi.org/10.1139/t89-036
  14. Lam, L., Fredlund, D. G., and Barbour, S. L. (1987). "Transient seepage model for saturated - unsaturated soil systems: a geotechnical engineering approach." Canadian Geotechnical Journal, 24(4), pp.565-580. https://doi.org/10.1139/t87-071
  15. Lambe, P. C. (1996). "Residual soils. In: special report 247. Landslides: investigation and mitigation." Washington DC: TRB, National Research Council, pp.507-524.
  16. Lee, S. R., Oh, T. K., Kim, Y. K., and Kim, H. C. (2009), "Influence of rainfall intensity and saturated permeability on slope stability during rainfall infiltration", Journal of KGS, Vol.25, No.1, pp.65-76.
  17. Ng, C. W. W., and Shi, Q. (1998). "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage." Computers and geotechnics, 22(1), pp.1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  18. Oh, S. B., Mun, J. H., Kim, T. K., and Kim, Y. K. (2008), "A case study of rainfall-induced slope failures on the effect of unsaturated soil characteristics", Journal of Korea Society of Civil Engineers(KSCE), Vol.28, No.3C, pp.167-179.
  19. Park, S. W. and Shin, G. H. (2009), "Stability analysis on unsaturated gneiss weathered soil slopes considering wetting path soil-water characteristic curve", Journal of KSCE, Vol.29, No.5C, pp.191-198.
  20. Rahardjo, H. and Leong, E. C. (1997). "Soil-water Characteristic Curves and Flux Boundary Problems, Unsaturated Soil Engineering." Practice-Geotechnical Special Publication, 68, pp.88-112.
  21. Rahardjo, H., Lim, T. T., Chang, M. F., and Fredlund, D. G. (1995). "Shear Strength Characteristics of a Residual Soil." Canadian Geotechnical Journal, 32, pp.60-77. https://doi.org/10.1139/t95-005
  22. Reid, M. E. (1997). Slope instability caused by small variations in hydraulic conductivity, Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, pp.717-725. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(717)
  23. van Genuchten, M. (1980), "Closed-form equation for predicting the hydraulic conductivity of unsaturated soils," Soil Science Society of America Journal, Vol.44, No.5, pp.35-53.

Cited by

  1. 유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가 vol.30, pp.4, 2014, https://doi.org/10.7843/kgs.2014.30.4.35