• Title/Summary/Keyword: 에너지데이터

Search Result 2,968, Processing Time 0.036 seconds

The research of the Sensor network service platform technology based on OGC (OGC 기반의 센서 네트워크 서비스 플랫폼 기술 연구)

  • Yeom, Sung-Kun;Yoo, Sang-Keun;Kim, Yong-Woon;Kim, Hyoung Jun;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1022-1025
    • /
    • 2009
  • USN(Ubiquitous Sensor Network) is a core infrastructure that makes come true the u-life in the ubiquitous society through various services of area such as u-city and u-Health. Therefore, we need to reseach about the domestic standards to establish the core technique of USN. Currently, the status of USN standards is most of technical standard and reseach that are technology for sensor node implementation and a protocol for energy-efficient communication and interlock with existing network. But, Standard and reseach for sensor network, integration management of heterogeneous sensor networks for USN application, sensing data management and USN database structure definition such as application and middleware are weak level. In this paper, we researched for standard development of the domestic sensor network service and relevant standard analysis to configure SWE(Sensor Web Enablement) of OGC(Open Geospatial Consortium) for standarded plattform technoloy in part of the middleware. Also we researched that it's a connection between domestic TTA (Telecommunications Technology Association) standards and SWE Standard. Finally, we researched for standard service plattform architecture on sensor network through analysis on the possibility of applying OGC-based services platform.

  • PDF

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

Influence of Internal and External Factors on the Inventory Turnover Change Rate (기업 내부적 및 외부적 요인이 재고자산회전율 변화율에 미치는 영향)

  • Seo, Yeong-Bok;Park, Chan-Kwon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.94-108
    • /
    • 2021
  • This study is to identify the internal and external factors of a company that can affect the rate of change in the inventory turnover ratio. In addition, by appropriately managing or responding to these factors, changes in the inventory turnover ratio do not occur abruptly, so that the company's business and financial performance can be improved. To confirm this, factors such as gross profit margin, cash flow volatility, advertising expenses, inflation, exchange rate rise, and leading economic index were selected, and these factors were predicted to affect the change rate of inventory turnover. Data of 85,878 companies were obtained from domestic securities listings, KOSDAQ listings, and externally audited companies, and multiple regression analysis was performed using the data. Gross profit margin and cash flow volatility have a significant positive (+) effect, advertising expenses have a negative (-) significant effect, and inflation and exchange rate rises have a negative (-) significant effect. As an influence, the leading economic index was tested to have a significant positive (+) effect. Through this, it is suggested that manufacturing companies can improve their business performance and achieve operational efficiency by well understanding and appropriately managing factors that can affect the change rate of inventory turnover.

Research on Digital twin-based Smart City model: Survey (디지털 트윈 기반 스마트 시티 모델 연구 동향 분석)

  • Han, Kun-Hee;Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.172-177
    • /
    • 2021
  • As part of the digital era, a digital twin that simulates the weak part of a product by performing a stress test that reduces the lifespan of some expensive equipment that cannot be done in reality by accurately moving the real world to virtual reality is being actively used in the manufacturing industry. Due to the development of IoT, the digital twin, which accurately collects data collected from the real world and makes it the same in the virtual space, is mutually beneficial through accurate prediction of urban life problems such as traffic, disaster, housing, quarantine, energy, environment, and aging. Based on its action, it is positioned as a necessary tool for smart city construction. Although digital twin is widely applied to the manufacturing field, this study proposes a smart city model suitable for the 4th industrial revolution era by using it to smart cities and increasing citizens' safety, welfare, and convenience through the proposed model. In addition, when a digital twin is applied to a smart city, it is expected that more accurate prediction and analysis will be possible by real-time synchronization between the real and virtual by maintaining realism and immediacy through real-time interaction.

A Study on the Connective Validity of Technology Maturity and Industry for Core Technologies based on 4th Industrial Revolution (4차 산업혁명 기반 핵심기술에 대한 기술성숙도와 산업과 연계 타당성 연구)

  • Cho, Han-Jin;Jeong, Kyuman
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.49-57
    • /
    • 2019
  • The core technology development of the Fourth Industrial Revolution is linked to the development of other core technologies, which will change the industrial structure in the future and create a new smart business model. In this paper, tried to analyze the technology maturity level and analyze the technology maturity. To do this, used technology trend information to investigate and integrate the market, policy, etc. Of core technology of the 4th Industrial Revolution to achieve a comprehensive maturity level. Because technology maturity measures are scored by technology developers, prejudices may be acted upon according to a person's tendency, which may be a subjective evaluation. It is also a measure of the maturity of individual technologies, and thus is not suitable for evaluating the overall system integration perspective. However, it is possible to evaluate the maturity before integrating the core element technologies constituting the whole system and to use it as a means to compare the effect of the whole system and its feasibility and play an important role in the planning of technology development.

A Deep-Learning Based Automatic Detection of Craters on Lunar Surface for Lunar Construction (달기지 건설을 위한 딥러닝 기반 달표면 크레이터 자동 탐지)

  • Shin, Hyu Soung;Hong, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.859-865
    • /
    • 2018
  • A construction of infrastructures and base station on the moon could be undertaken by linking with the regions where construction materials and energy could be supplied on site. It is necessary to detect craters on the lunar surface and gather their topological information in advance, which forms permanent shaded regions (PSR) in which rich ice deposits might be available. In this study, an effective method for automatic detection of lunar craters on the moon surface is taken into consideration by employing a latest version of deep-learning algorithm. A training of a deep-learning algorithm is performed by involving the still images of 90000 taken from the LRO orbiter on operation by NASA and the label data involving position and size of partly craters shown in each image. the Faster RCNN algorithm, which is a latest version of deep-learning algorithms, is applied for a deep-learning training. The trained deep-learning code was used for automatic detection of craters which had not been trained. As results, it is shown that a lot of erroneous information for crater's positions and sizes labelled by NASA has been automatically revised and many other craters not labelled has been detected. Therefore, it could be possible to automatically produce regional maps of crater density and topological information on the moon which could be changed through time and should be highly valuable in engineering consideration for lunar construction.

A Study on the Possibility of the Earthquake Detection based on Telluric Current Monitoring (지전류 모니터링 기반 지진 감지 가능성 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jun, Seokang;Chung, Hojoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.107-115
    • /
    • 2019
  • Recently, since earthquakes have happened frequently in Gyeongju and Pohang areas in Korea, the earthquake detection research gets lots of attention. Geophysical monitoring data have been changed during the earthquake activity because the huge amount of energy is accumulated. The change of telluric current can be predicted by both of piezoelectric and electrokinetic effects before or during the earthquake occurrence, and if the change value exceeds the conventional telluric current noise, we can measure changes in the electric field associated with earthquakes. In this study, we have self-developed and verified the system that can monitor the telluric current. In order to verify our telluric current monitoring system, we installed lines of 40 m (E-W direction) and 28 m (N-S direction) on the site in Pohang. The telluric currents were sampled at 1 kHz for about a month. We have compared and analyzed the data of earthquake signals and electrical noises based on the earthquakes that occurred during the monitoring period. We have monitored if there were significant signals related to the earthquake on measured time series data. Through this study, we will suggest the direction of continuous research in the future.

An analysis of excavation cycle time for Korean tunnels and the comparison with the Standard of Construction Estimate (국내터널 굴착 사이클타임에 대한 분석결과와 표준품셈과의 비교)

  • Kim, Yangkyun;Kim, Hyung-Mok;Lee, Sean S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.137-153
    • /
    • 2019
  • Estimating tunnel construction time and costs are the most fundamental part of a tunnel project planning, which has been generally assessed on a deterministic basis until now. In this paper, excavation cycle time was investigated for two road tunnels and one subway tunnel, and the results were compared with the Standard of Construction Estimate (SE), which is made for the estimation of construction time and cost in a design stage. The results show that the difference in cycle time between SE and actual cycle time is 50%, 7% and 31% respectively for the three tunnels, which means that SE does not reflect practical operation time. The major reasons of the difference are skilled level of tunneling workers, the change of operation sequences for more effective operations, much more complicated working atmosphere in a tunnel than the assumption of SE etc. Finally, even though the results can not be generalized since investigated tunnels are only 3, but it is thought that SE needs to be upgraded into the model able to consider quite common situations through additional tunnel investigation and studies in the future.

Performance analysis of OFDM and CDMA communication methods in underwater acoustic channel (수중 채널 환경에서 OFDM 및 CDMA 통신 방식별 성능 분석)

  • Kim, Kil-Yong;Kim, Min-Sang;Ko, Hak-Lim;Im, Tae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • In recent years, researches on various communication methods have been conducted, particularly on OFDM (Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) methods, as the use of underwater communication increases. While OFDM is, in general, advantageous in that it is resistant to Doppler in the water and it enables a high-speed communication, CDMA is resistant to frequency selective fading in the water and it can reduce energy consumption. Therefore, in this paper, we performed experiments in the shallow water in Western Sea of Korea to analyze the performance of OFDM and CDMA communication systems in the underwater channel environment. The maximum delay spread and Doppler spread were drawn by using the data obtained from the real sea area in order to analyze the underwater channel environment characteristics of the shallow water in Western Sea of Korea. The communication performances of OFDM and CDMA are shown as coded BER (Bit Error Rate) according to the variation of the maximum delay spread and the Doppler spread, respectively. The result of the analysis show that the OFDM method has more resistant performances to the underwater channel environment changes than the CDMA method.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.