DOI QR코드

DOI QR Code

An analysis of excavation cycle time for Korean tunnels and the comparison with the Standard of Construction Estimate

국내터널 굴착 사이클타임에 대한 분석결과와 표준품셈과의 비교

  • Kim, Yangkyun (Resources Development Institute, Hanyang University) ;
  • Kim, Hyung-Mok (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Lee, Sean S. (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 김양균 (한양대학교 자원개발연구소) ;
  • 김형목 (세종대학교 에너지자원공학과) ;
  • 이승원 (한양대학교 자원환경공학과)
  • Received : 2018.11.28
  • Accepted : 2018.12.24
  • Published : 2019.01.31

Abstract

Estimating tunnel construction time and costs are the most fundamental part of a tunnel project planning, which has been generally assessed on a deterministic basis until now. In this paper, excavation cycle time was investigated for two road tunnels and one subway tunnel, and the results were compared with the Standard of Construction Estimate (SE), which is made for the estimation of construction time and cost in a design stage. The results show that the difference in cycle time between SE and actual cycle time is 50%, 7% and 31% respectively for the three tunnels, which means that SE does not reflect practical operation time. The major reasons of the difference are skilled level of tunneling workers, the change of operation sequences for more effective operations, much more complicated working atmosphere in a tunnel than the assumption of SE etc. Finally, even though the results can not be generalized since investigated tunnels are only 3, but it is thought that SE needs to be upgraded into the model able to consider quite common situations through additional tunnel investigation and studies in the future.

터널공사 시간 및 비용의 예측은 터널공사를 계획하는데 있어서 가장 기본적인 사항이며, 우리나라에서는 결정론적 방법에 따라 체계화된 표준품셈에 의해 계산하고 있다. 본 논문에서는 국내 터널 공사기간 또는 사이클타임의 신뢰성 있는 예측모델 구축이라는 장기적인 목표를 위하여, 우선 국내 터널 3개의 현장에 대한 터널굴착시간을 세부공종별로 분석하고, 터널설계시 공사기간을 추정하는 공식적인 방법인 표준품셈에서의 사이클타임과 비교하였다. 그 결과 실제 굴착 사이클타임은 표준품셈대비 3개의 터널 각각 50 %, 7%, 31% 수준의 차이를 보였고, 특히 숏크리트와 록볼트 타설시간에서는 각각 171%, 88%로 매우 큰 차이를 보였다. 이에 대한 가장 큰 이유는 표준품셈은 주된 작업공종별로만 작업시간이 분류되어 있어 터널작업자들의 숙련도, 각종 시공장비의 종류 및 사양, 또는 터널굴착작업에서 발생하는 다양한 시공조건을 고려하고 있지 않기 때문이다. 결국 본 연구결과는 현재까지 조사가 이루어진 터널 3개 현장의 특정한 상황에 대해서만 적용될 수 있으므로, 향후 터널굴착 세부작업시간에 대한 지속적인 데이터 축적을 통해 신뢰성 있는 터널굴진시간 예측모델을 구축할 계획이다.

Keywords

TNTNB3_2019_v21n1_137_f0001.png 이미지

Fig. 1. Possibility of total construction time and cost estimates (Špačková, 2012)

TNTNB3_2019_v21n1_137_f0002.png 이미지

Fig. 2. Cross section shapes and drill patterns of the investigated tunnels

TNTNB3_2019_v21n1_137_f0003.png 이미지

Fig. 3. Comparison of cycle time for the 3 tunnels

TNTNB3_2019_v21n1_137_f0004.png 이미지

Fig. 4. Ranges of operation time in actual operations and by SE

TNTNB3_2019_v21n1_137_f0005.png 이미지

Fig. 5. Comparison of the ranges of cycle time in actual operations and by SE

TNTNB3_2019_v21n1_137_f0006.png 이미지

Fig. 6. Drilling & charging part of TUNSIM-Q for the estimation of basic construction time

TNTNB3_2019_v21n1_137_f0007.png 이미지

Fig. 7. Flow to estimate the basic construction time in TUNSIM-Q (Kim and Bruland, 2009)

Table 1. Summary of the investigated tunnels

TNTNB3_2019_v21n1_137_t0001.png 이미지

Table 2. Cycle time by the Standard of Construction Estimate (MOLIT and KICT, 2018)

TNTNB3_2019_v21n1_137_t0002.png 이미지

Table 3. Definition of tunnel type (MOLIT and KICT, 2018)

TNTNB3_2019_v21n1_137_t0003.png 이미지

Table 4. Drilling rate of drilling jumbos (MOLIT and KICT, 2018)

TNTNB3_2019_v21n1_137_t0004.png 이미지

Table 5. Typical range of load factor

TNTNB3_2019_v21n1_137_t0005.png 이미지

Table 6. Results of the variables defined in Table 2

TNTNB3_2019_v21n1_137_t0006.png 이미지

Table 7. Comparison of operation time in actual operations and by SE

TNTNB3_2019_v21n1_137_t0007.png 이미지

References

  1. Doo, J., Kim, J. (2007), "A study on the Standard of Construction Estimate by performed construction cost and design of a drill & blast tunnel in Korea", Proceeding of the Korea Society for Explosives and Blasting Engineering, pp. 211-219.
  2. Health and Safety Executive (1996), Safety of new Austrian tunnelling method tunnels - a review of sprayed concrete lined tunnels with particular reference to London clay, HSE Books, Suffolk, pp. 86. Downloaded from http://www.hse.gov.uk/pubns/natm.html.
  3. Isaksson, T., Stille, H. (2005), "Model for estimation of time and cost for tunnel projects based on risk evaluation", Rock Mechanics and Rock Engineering, Vol. 38, No. 5, pp. 378-398.
  4. John, M., Wogrin, J., Heissel, G. (1987), "Analyse des verbruches im Landruckentunnel", Baulos Mitte. Felsbau, Vol. 5, No. 2.
  5. Kim, Y., Bruland, A. (2009), "Effect of rock mass quality on construction time in a road tunnel", Tunnelling and Underground Space Technology, Vol. 24, No. 5, pp. 584-591. https://doi.org/10.1016/j.tust.2009.02.004
  6. Kovari, K., Fechtig, R., Amstad, Ch. (1991), "Erfahrungen mit vortriebsmaschinen grossen durchmessers in der Schweiz", Proceedings of the STUVA-Tagung 1991, Vol. 34, Dusseldorf, pp. 24-33.
  7. Min, S., Kim, T., Einstein, H., Lee, J., Kim, H. (2003), "A study on construction simulation of road tunnel using Decision Aids for Tunneling (DAT)", Journal of Korean Tunnelling and Underground Space Association, Vol. 5, No. 2, pp. 161-174.
  8. MOLIT (Ministry of Land, Infrastructure and Transport) (2016), Practical design technique for construction of national road, Ministry of Land, Infrastructure and Transport, Seoul, pp. 414-415.
  9. MOLIT (Ministry of Land, Infrastructure and Transport), KICT (Korea Institute of Civil Engineering and Building Technology) (2018), Standard of construction estimate for civil, building and machine facility, Korea Institute of Civil Engineering and Building Technology, Koyang, pp. 407-414.
  10. NTNU (NTH) (1995), Tunnellling-Prognosis for drill and blast, Project Report 2B-95, NTNU (Norwegian University of Science and Technology), pp. 1-56.
  11. Salazar, G.F. (1983), Stochastic and economic evaluation of adaptability in tunneling design and construction, Ph.D. Thesis, Massachusetts Institute of Technology, pp. 24-57.
  12. Spackova, O. (2012), Risk management of tunnel construction projects, Ph.D. Thesis, Czech Technical University in Prague, pp. 6-8.
  13. Spackova, O., Sejnoha, J., Straub, D. (2013), "Probabilistic assessment of tunnel construction performance based on data", Tunnelling and Underground Space Technology, Vol. 37, pp. 62-78. https://doi.org/10.1016/j.tust.2013.02.006