• 제목/요약/키워드: 얼굴 복원

검색결과 78건 처리시간 0.021초

저해상도 얼굴 영상의 해상도 개선을 위한 영역 기반 복원 방법 (Region-Based Reconstruction Method for Resolution Enhancement of Low-Resolution Facial Image)

  • 박정선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권5호
    • /
    • pp.476-486
    • /
    • 2007
  • 본 논문에서는 영역 기반 복원 방법을 통하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 제안된 방법은 예제 기반 복원과 얼굴 영상을 형태 정보와 질감 정보로 나누어 표현하는 변형 가능 얼굴 모형에 기반한다. 먼저, 예제 기반 복원 방법의 성능을 개선하기 위하여, 전역 복원 결과와 국부적 복원 결과를 결합하는 영역 기반 복원 방법을 제안한다. 또한, 변형 가능 얼굴 모형의 장점을 해상도 복원에 적용하기 위하여, 확장된 변형 가능 얼굴 모형을 정의한다. 제안된 모형에서 얼굴 영상은 저해상도 얼굴 영상, 보간법을 통해 개선한 고해상도 얼굴 영상, 그리고 원래의 고해상도 얼굴 영상의 쌍으로 구성되며, 이는 다시 확장된 형태 정보와 확장된 질감 정보로 나뉜다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있는 가능성을 확인하였다.

적은 수의 특징점을 이용한 얼굴 영상 복원 (Face Reconstruction Using a Small Set of Feature Points)

  • 황본우;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.583-585
    • /
    • 2000
  • 본 논문에서는 적은 수의 특징점을 이용한 얼굴 복원 방법을 제안한다. 먼저 얼굴을 형태와 질갑 프로토타입들의 선형 중첩으로 모형화한 다음, 특징점에서의 형태와 질감정보만을 가지고 각각의 얼굴이 요구하는 변형의 근사값을 찾는다. 본 논문에서는 이러한 under-determined 조건에서 최소 제곱법(least square minimization method)을 사용하여 최적값을 얻는다. 실험을 통하여 적은 수의 특징점을 이용하여 2차원 얼굴 영상을 효율적으로 복원할 수 있음을 검증하였다. 우리는 제안된 얼굴 영상을 압축하거나 겹침이나 잡영에 의해 손상된 영상으로부터 원래의 전체 정보를 복원하는데 중요한 역할을 할 수 있을 것으로 기대한다.

  • PDF

하향식 기계학습의 반복적 오차 역투영에 기반한 고해상도 얼굴 영상의 복원 (Reconstruction of High-Resolution Facial Image Based on Recursive Error Back-Projection of Top-Down Machine Learning)

  • 박정선;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권3호
    • /
    • pp.266-274
    • /
    • 2007
  • 본 논문에서는 하향식 기계 학습 및 반복적 오차 역투영음 이용하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 먼저 얼굴 영상을 독립된 형태 기저와 질감 기저의 선형 중첩으로 표현하고, 주어진 저해상도 얼굴 영상을 형태 기저와 질감 기저의 선형 중첩으 로 최대한 근사하게 표현할 수 있는 계수를 추정한다. 이 추정된 계수를 고해상도 얼굴 영상의 형태 기저 와 질감 기저의 선형 중첩 계수로 사용함으로써 고해상도 얼굴 영상을 복원한다. 또한, 복원된 고해상도 얼굴 영상의 정확도를 개선하기 위하여 학습 기반 오차 역투영 과정을 반복적으로 적용한다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있음을 확인하였다.

MPEG 압축 비디오 상에서의 얼굴 영역 추출 및 인식 (Face Detection and Recognition in MPEG Compressed Video)

  • 여창욱;황본우;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.452-454
    • /
    • 1998
  • 본 논문에서는 MPEG 압축 비디오 상에서 얼굴 영역을 추출하고 이를 인식하는 방법에 대하여 제안한다. 제안된 방법은 크게 MPEG 압축 비디오의 처리를 위한 축소된 DC 영상의 구성 단계, 축소된 DC 영상에서의 얼굴 영역 추출 단계, 그리고 얼굴 영역이 추출된 프레임에 대한 압축 복원 및 얼굴 인식의 3단계로 구성되어있다. DC 영상의 구성 단계에서는 압축 복원 없이 DCT 계수의 DC 값과 2개의 AC 값만을 사용하여 부분적인 2차원 역 DCT 변환을 이용한 방법을 사용하였으며, 얼굴 영역 추출 단계에서는 DC 영상에 대해 얼굴의 색상 및 형태 정보를 이용한 얼굴 후보 영역 추출 방법과 K-L 변환 및 역 변환의 오차에 의한 얼굴 영역 추출 방법을 사용하였다. 얼굴 인식 단계에서는 얼굴 영역이 추출된 프레임에 대하여 GOP 단위의 압축 복원을 수행한 후 고유 얼굴 영상을 이용한 방법으로 얼굴 인식을 수행하였다. 제안된 방법의 성능을 검증하기 위하여 뉴스와 드라마 MPEG 비디오를 대상으로 실험을 수행하였으며, 실험 결과 제안된 방법이 효율적임을 알 수 있었다.

  • PDF

상관관계에 기반한 가려진 얼굴 영상 검출 및 복원 (Detection and Recovery of Occluded Face Images Based on Correlation)

  • 이지은;곽노준
    • 대한전자공학회논문지SP
    • /
    • 제48권5호
    • /
    • pp.72-83
    • /
    • 2011
  • 본 논문에서는 화소들 간의 상관관계를 이용하여 가려진 얼굴 영상을 검출하고 복원하는 방법을 제안한다. 본 논문의 학습 단계에서는 기존에 이용된 주성분 분석법( PCA )의 변환 행렬 대신 상관계수를 계산하고, 테스트 단계에서는 학습 단계에서 구한 상관계수를 이용하여 가려진 얼굴 영역 검출 과정과 복원 과정을 수행한다. 검출된 영상과 복원된 영상은 실험을 통해 기존 방법과 비교한다. 실험 결과, 상관관계 방법에 의해 검출된 영상은 기존 주성분 분석법을 이용한 방법보다 가려진 얼굴 영역 및 주변 영역의 잡음이 적음을 확인하였다. 또한 복원된 얼굴 영상에서는 영상의 뭉개지는 현상이 줄어들었으며, 복원된 얼굴 영상의 가려진 부분과 가려지지 않은 부분과의 경계가 보다 매끄럽게 연결되는 것을 확인하였다.

얼굴 특징점 자동 추출 오류에 강인한 3차원 얼굴 복원 방법 (A 3D Face Reconstruction Method Robust to Errors of Automatic Facial Feature Point Extraction)

  • 이연주;이성주;박강령;김재희
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.122-131
    • /
    • 2011
  • 최근에 널리 사용되고 있는 단일 영상 기반의 3차원 얼굴 복원 방법인 변형 가능한 3차원 얼굴 형상 모델(3D morphable shape model)은 입력 영상으로부터 2차원 얼굴 특징점들을 정확하게 추출할 경우, 입력 얼굴과 유사한 3차원 얼굴 형상을 생성할 수 있다. 그러나 실시간 3차원 얼굴 복원 시스템과 같이 사용자의 협조가 불가능한 경우에는 자동으로 얼굴 특징점들을 추출해야 하기 때문에, 특징점 추출 오류가 발생하여 정확한 3차원 얼굴 형상을 생성하기 어려운 문제가 있다. 이러한 문제를 해결하기 위해서, 본 논문에서는 특징점 추출 시 오추출 특징점과 정추출 특징점을 자동으로 분류하고, 정추출 특징점들만을 이용하여 3차원 얼굴을 복원하는 방법을 제안하였다. 실험결과에서는 특징점 자동 추출 오류를 고려하지 않은 기존 방법과 비교한 결과, 제안방법의 3차원 얼굴 복원 성능이 크게 향상되었음을 확인하였다.

얼굴 인식률 향상을 위한 손상된 얼굴 영역의 복원 (Reconstruction of Partially Damaged face for Improving a Face Recognition Rate)

  • 최재영;황승호;김낙빈
    • 한국멀티미디어학회논문지
    • /
    • 제7권3호
    • /
    • pp.308-318
    • /
    • 2004
  • 손상된 얼굴영상을 인식하는 문제는 자동 얼굴인식 시스템의 상용화에 중요한 논점이 되고 있다. 손상된 영상에서 얼굴을 인식하기 위한 방법은 크게 두 가지로 나누어진다. 첫째는 손상된 정보를 제거하여 인식을 하는 것이고, 둘째는 손상된 정보를 복원한 후에 인식을 하는 것이다. 본 논문에서는 손상된 영상을 코호넨 네트워크에 입력하여 손상된 영역을 추출한 다음에 주성분 분석을 통해 얻은 특징 벡터의 계수 추정을 이용하여 복원하는 방안을 제시한다. 본 논문에서 제안한 방법은 손상되지 않은 영역을 기반으로 하여 손상된 영역의 특징 벡터를 추정하고, 추정된 특징 벡터로써 손상된 영상을 복원하는 방법으로 학습되어지지 않은 영상에서도 복원이 가능하다. 본 연구실에서 얼굴 인식에 많은 영향을 미치는 눈과 입 부위를 인위적으로 손상시킨 영상을 실험하였을 때, 복원된 영상의 인식률은 학습된 영상의 경우에는 코호넨 네트워크를 사용한 방법과는 유사한 결과를 나타내고 대칭성을 이용한 방법에 비해서는 11.8%가 향상되었으며, 학습되지 않은 영상에서의 경우에는 코호넨 네트워크를 이용한 방법과 대칭성을 이용한 방법에 비해 각각 14%, 7% 향상되었다.

  • PDF

측면 2차원 얼굴 영상들의 대칭성을 이용한 3차원 얼굴 복원 (A 3D Face Reconstruction Based on the Symmetrical Characteristics of Side View 2D Face Images)

  • 이성주;박강령;김재희
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.103-110
    • /
    • 2011
  • 기존에 널려 쓰이는 3차원 얼굴 복원 방식인 Structure from motion(SfM)은 정면 및 좌우 측면 영상들이 입력할 때, 좌우 얼굴 특정 점들이 검출되어 우수한 성능을 보인다. 그러나 감시 카메라 환경과 같이 한 쪽 측면 얼굴 영상들이 입력될 경우, 보이는 한 쪽 얼굴 특정 점들만이 입력되므로, 가려진 부분의 얼굴이 제대로 복원되지 않는 문제가 있다. 이러한 문제를 해결하기 위해, 본 논문은 사람의 얼굴이 좌우 대칭이라는 제한 조건을 이용하여 대칭이 되는 얼굴 특정 정들을 생성하였으며, 이렇게 생성된 얼굴 특정 점들과 입력된 얼굴 특정 점들을 결합하여 사용함으로써 기존 SfM 기반 3차원 얼굴 복원 방식의 성능을 향상시켰다. 제안한 3차원 얼굴 복원 방법을 정량적으로 평가하기 위해 3차원 스캐너를 이용해 3차원 얼굴을 취득하였고, 이를 복원한 3차원 얼굴과 비교한 결과 좌우 대칭 특정 점들을 함께 사용하는 제안한 3차원 복원 방식은 한 쪽 측면 특정 점들만을 사용하는 기존 방식에 비해 우수한 성능을 보였다.

SVDD 기반 노이즈 제거 기법을 이용한 얼굴 영상의 복원 (Reconstruction of Facial Image Utilizing SVDD based Denoising Method)

  • 강대성;김종호;박주영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2903-2905
    • /
    • 2005
  • 많은 경우, 부분 손상된 얼굴 영상을 복원해야 할 필요가 있다. 대표적인 예로는 감시카메라에 찍힌 범인의 얼굴 영상이 이에 속한다. 이런 경우 얼굴의 중요한 부분이 가려져 있기 때문에 자동 얼굴 인식 시스템이나 사람의 관찰로는 그 부분을 인식하기는 매우 어렵다. 이 논문에서는 어려움을 극복하기 위해 새롭게 개발된 SVDD기반 노이즈 제거 기법을 부분 손상된 얼굴 영상에 적용한 문제를 고려해 보았다.

  • PDF

다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원 (Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model)

  • 김상훈
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.563-570
    • /
    • 2002
  • 본 논문은 MPEG4 SNHC의 얼굴 모델 인코딩을 구현하기 위하여 연속된 2차원 영상으로부터 얼굴영역을 검출하고, 얼굴의 특징데이터들을 추출한 후, 얼굴의 3차원 모양 및 움직임 정보를 복원하는 알고리즘과 결과를 제시한다. 얼굴 영역 검출을 위해서 영상의 거리, 피부색상, 움직임 색상정보등을 융합시킨 멀티모달합성의 방법이 사용되었다. 결정된 얼굴영역에서는 MPEG4의 FDP(Face Definition Parameter) 에서 제시된 특징점 위치중 23개의 주요 얼굴 특징점을 추출하며 추출성능을 향상시키기 위하여 GSCD(Generalized Skin Color Distribution), BWCD(Black and White Color Distribution)등의 움직임색상 변환기법과 형태연산 방법이 제시되었다. 추출된 2차원 얼팔 특징점들로부터 얼굴의 3차원 모양, 움직임 정보를 복원하기 위하여 준원근 카메라 모델을 적용하여 SVD(Singular Value Decomposition)에 의한 인수분해연산을 수행하였다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 복원된 얼굴의 움직임 정보는 MPEG4 FAP(Face Animation Parameter)로 변환된 후, 인터넷상에서 확인이 가능한 가상얼굴모델에 인코딩되어 실제 얼굴파 일치하는 모습을 확인하였다.