• Title/Summary/Keyword: 얼굴검출 및 인식

Search Result 211, Processing Time 0.027 seconds

Implementation to eye motion tracking system using OpenCV and convolutional neural network (OpenCV 와 Convolutional neural network를 이용한 눈동자 모션인식 시스템 구현)

  • Lee, Seung Jun;Heo, Seung Won;Lee, Hee Bin;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.379-380
    • /
    • 2018
  • Previoisly presented "Implementation to pupil motion recognition system using convolution neural network".is improved. Using OpenCV, face and eye areas are detected, and then configure the neural network using Numpy. This pupil motion recognition system is based on the Numpy for configuring and calculating the neural network. This system is implemented on DE1-SOC.

  • PDF

Recognition of Resident Registration Card using ART2-based RBF Network and face Verification (ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식)

  • Kim Kwang-Baek;Kim Young-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • In Korea, a resident registration card has various personal information such as a present address, a resident registration number, a face picture and a fingerprint. A plastic-type resident card currently used is easy to forge or alter and tricks of forgery grow to be high-degree as time goes on. So, whether a resident card is forged or not is difficult to judge by only an examination with the naked eye. This paper proposed an automatic recognition method of a resident card which recognizes a resident registration number by using a refined ART2-based RBF network newly proposed and authenticates a face picture by a template image matching method. The proposed method, first, extracts areas including a resident registration number and the date of issue from a resident card image by applying Sobel masking, median filtering and horizontal smearing operations to the image in turn. To improve the extraction of individual codes from extracted areas, the original image is binarized by using a high-frequency passing filter and CDM masking is applied to the binaried image fur making image information of individual codes better. Lastly, individual codes, which are targets of recognition, are extracted by applying 4-directional contour tracking algorithm to extracted areas in the binarized image. And this paper proposed a refined ART2-based RBF network to recognize individual codes, which applies ART2 as the loaming structure of the middle layer and dynamicaly adjusts a teaming rate in the teaming of the middle and the output layers by using a fuzzy control method to improve the performance of teaming. Also, for the precise judgement of forgey of a resident card, the proposed method supports a face authentication by using a face template database and a template image matching method. For performance evaluation of the proposed method, this paper maked metamorphoses of an original image of resident card such as a forgey of face picture, an addition of noise, variations of contrast variations of intensity and image blurring, and applied these images with original images to experiments. The results of experiment showed that the proposed method is excellent in the recognition of individual codes and the face authentication fur the automatic recognition of a resident card.

  • PDF

Memory-Free Skin-Detection Algorithm and Implementation of Hardware Design for Small-Sized Display Device (소형 DISPLAY 장치를 위한 비 메모리 피부 검출 알고리즘 및 HARDWARE 구현)

  • Im, Jeong-Uk;Song, Jin-Gun;Ha, Joo-Young;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1456-1464
    • /
    • 2007
  • The research of skin-tone detection has been conducting continuously to enlarge the importance in security, surveillance and administration of the information and 'Password Control System' for using face and skin recognition in airports, harbors and general companies. As well as tile rapid diffusion of the application range in image communications and an electron transaction using wide range of communication network, the importance of the accurate detection of skin color has been augmenting recently. In this paper, it will set up the boundaries of skin colors using the information of Cb and Cr in YCbCr color model of human skin color which is from hundreds compiled portrait images for each race, and suggest a efficient yet simple structure about the skin detection which has been followed by whether the comprehension of the boundaries of skin or not with adaptive skin-range set. With the possibility of the 1D Processes which does not use any memory, it is able to be applied to relatively small-sized hardware and system such as mobile apparatuses. To add the selective mode, it is not only available the improvement of tie skin detection, but also showing the correspondent results about previous face recognition technologies using complicated algorithm.

Facial Contour Extraction in PC Camera Images using Active Contour Models (동적 윤곽선 모델을 이용한 PC 카메라 영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.633-638
    • /
    • 2005
  • The extraction of a face is a very important part for human interface, biometrics and security. In this paper, we applies DCM(Dilation of Color and Motion) filter and Active Contour Models to extract facial outline. First, DCM filter is made by applying morphology dilation to the combination of facial color image and differential image applied by dilation previously. This filter is used to remove complex background and to detect facial outline. Because Active Contour Models receive a large effect according to initial curves, we calculate rotational degree using geometric ratio of face, eyes and mouth. We use edgeness and intensity as an image energy, in order to extract outline in the area of weak edge. We acquire various head-pose images with both eyes from five persons in inner space with complex background. As an experimental result with total 125 images gathered by 25 per person, it shows that average extraction rate of facial outline is 98.1% and average processing time is 0.2sec.

  • PDF

Iris Detection at a Distance by Non-volunteer Method (비강압적 방법에 의한 원거리에서의 홍채 탐지 기법)

  • Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.705-708
    • /
    • 2018
  • Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.

  • PDF

Fast Shape Matching Algorithm Based on the Improved Douglas-Peucker Algorithm (개량 Douglas-Peucker 알고리즘 기반 고속 Shape Matching 알고리즘)

  • Sim, Myoung-Sup;Kwak, Ju-Hyun;Lee, Chang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.497-502
    • /
    • 2016
  • Shape Contexts Recognition(SCR) is a technology recognizing shapes such as figures and objects, greatly supporting technologies such as character recognition, motion recognition, facial recognition, and situational recognition. However, generally SCR makes histograms for all contours and maps the extracted contours one to one to compare Shape A and B, which leads to slow progress speed. Thus, this paper has made simple yet more effective algorithm with optimized contour, finding the outlines according to shape figures and using the improved Douglas-Peucker algorithm and Harris corner detector. With this improved method, progress speed is recognized as faster.

Quantified Lockscreen: Integration of Personalized Facial Expression Detection and Mobile Lockscreen application for Emotion Mining and Quantified Self (Quantified Lockscreen: 감정 마이닝과 자기정량화를 위한 개인화된 표정인식 및 모바일 잠금화면 통합 어플리케이션)

  • Kim, Sung Sil;Park, Junsoo;Woo, Woontack
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1459-1466
    • /
    • 2015
  • Lockscreen is one of the most frequently encountered interfaces by smartphone users. Although users perform unlocking actions every day, there are no benefits in using lockscreens apart from security and authentication purposes. In this paper, we replace the traditional lockscreen with an application that analyzes facial expressions in order to collect facial expression data and provide real-time feedback to users. To evaluate this concept, we have implemented Quantified Lockscreen application, supporting the following contributions of this paper: 1) an unobtrusive interface for collecting facial expression data and evaluating emotional patterns, 2) an improvement in accuracy of facial expression detection through a personalized machine learning process, and 3) an enhancement of the validity of emotion data through bidirectional, multi-channel and multi-input methodology.

Pupil and Lip Detection using Shape and Weighted Vector based on Shape (형태와 가중치 벡터를 이용한 눈동자와 입술 검출)

  • Jang, kyung-Shik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.311-318
    • /
    • 2002
  • In this paper, we propose an efficient method for recognizing pupils and lip in a human face. Pupils are detected by a cost function, which uses features based on the eye's shape and a relation between pupil and eyebrow. The inner boundary of lip is detected by weighted vectors based on lip's shape and on the difference of gray level between lip and face skin. These vectors extract four feature points of lip : the top of the upper lip, the bottom of the lower lip, and the two corners. The experiments have been performed for many images and show very encouraging result.

An Enhanced Method for Detecting Iris from Smartphone Images in Real-Time (스마트폰 영상에서의 개선된 실시간 눈동자 검출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.643-650
    • /
    • 2013
  • In this paper, we propose a novel method for enhancing the detection speed and rate by reducing the computation in Hough Circle Transform on real-time iris detection of smartphone camera image. First of all, we find a face and eyes from input image to detect iris and normalize the iris region into fixed size to prevent variation of size for iris region according to distance from camera lens. Moreover, we carry out histogram equalization to get regular image in bright and dark illumination from smartphone and calculate minimal iris range that contains iris with the distance between corner of the left eye and corner of the right eye on the image. Subsequently, we can minimize the computation of iris detection by applying Hough Circle Transform on the range including the iris only. The experiment is carried out in two case with bright and dark illumination. Our proposed method represents that detection speed is 40% faster and detection rate is 14% better than existing methods.

Posture Recognition for a Bi-directional Participatory TV Program based on Face Color Region and Motion Map (시청자 참여형 양방향 TV 방송을 위한 얼굴색 영역 및 모션맵 기반 포스처 인식)

  • Hwang, Sunhee;Lim, Kwangyong;Lee, Suwoong;Yoo, Hoyoung;Byun, Hyeran
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.549-554
    • /
    • 2015
  • As intuitive hardware interfaces continue to be developed, it has become more important to recognize the posture of the user. An efficient alternative to adding expensive sensors is to implement computer vision systems. This paper proposes a method to recognize a user's postured in a live broadcast bi-directional participatory TV program. The proposed method first estimates the position of the user's hands by generation a facial color map for the user and a motion map. The posture is then recognized by computing the relative position of the face and the hands. This method exhibited 90% accuracy in an experiment to recognize three defined postures during the live broadcast bi-directional participatory TV program, even when the input images contained a complex background.