DOI QR코드

DOI QR Code

Fast Shape Matching Algorithm Based on the Improved Douglas-Peucker Algorithm

개량 Douglas-Peucker 알고리즘 기반 고속 Shape Matching 알고리즘

  • 심명섭 (건국대학교 컴퓨터.정보통신학과) ;
  • 곽주현 (건국대학교 컴퓨터.정보통신학과) ;
  • 이창훈 (건국대학교 컴퓨터공학과)
  • Received : 2016.07.21
  • Accepted : 2016.08.09
  • Published : 2016.10.31

Abstract

Shape Contexts Recognition(SCR) is a technology recognizing shapes such as figures and objects, greatly supporting technologies such as character recognition, motion recognition, facial recognition, and situational recognition. However, generally SCR makes histograms for all contours and maps the extracted contours one to one to compare Shape A and B, which leads to slow progress speed. Thus, this paper has made simple yet more effective algorithm with optimized contour, finding the outlines according to shape figures and using the improved Douglas-Peucker algorithm and Harris corner detector. With this improved method, progress speed is recognized as faster.

Shape Contexts Recognition(SCR)은 도형이나 사물 등의 모양을 인식하는 기술로 문자인식, 모션인식, 얼굴인식, 상황인식 등의 기반이 되는 기술이다. 하지만 일반적인 SCR은 Shape의 모든 contour에 대해 히스토그램을 만들고 Shape A, B 비교를 위해 추출된 contour를 1:1 개수대로 매핑함으로써 처리속도가 느리다는 단점이 있다. 따라서 본 논문에서는 Shape 모양에 따라 윤곽선을 찾고 개량 DP 알고리즘 및 해리스코너 검출기를 이용하여 contour를 최적화시킴으로써 간략하면서도 더 효과적인 알고리즘을 만들었다. 이렇게 개선된 방법을 사용함으로써 기존방법보다 처리 수행속도가 빨라짐을 확인하였다.

Keywords

References

  1. Ju-Hyun Kwak, Il-Young Woen, and Chang-Hoon Lee, "Learning Algorithm for Multiple Distribution Data using Haar-like Feature and Decision Tree," KIPS Transactions on Software and Data Engineering, Vol.2, No.1, pp.43-48, 2013. https://doi.org/10.3745/KTSDE.2013.2.1.043
  2. Dong Hyun Kim, Bumseop Ham, and Kwanghoon Sohn, "Harris Corner Points Based Disparity Search Range Estimation," Proceedings of the Korean Society of Broadcast Engineers Conference, pp.42-45, 2011.7.
  3. Konstantinos G. Derpanis, "The harris corner detector, Technical Report," York University, 2004. available: http://www.cse.yorku.ca/-kosta/CompVis_Notes/harris_detector.pdf.
  4. D. Douglas and T. Peucker, "Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Carcature," The International Journal for Geographic Information and Geovisualization, Vol.10, No.2, pp.112-122, 1973. https://doi.org/10.3138/FM57-6770-U75U-7727
  5. Jin-Hyeok Park et al., "Vector Map Data compression based on Douglas Peucker Simplification Algorithm and Bin Classification," Journal of Korea Multimedia Society, Vol.18, No.3, pp.298-311, 2015. https://doi.org/10.9717/kmms.2015.18.3.298
  6. Do-Hyeon Gil and Si-Woong Lee, "Fast Shape Matching Algorithm Based on Shape Context Using Statistical Features," Journal of Taejon National University of Technology, Vol.8, No.1, pp.113-118, 2010.
  7. S. Belongie, J. Malik, and J Puzicha, "Shape Matching and Object Recognition Using Shape Contexts," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.24, pp.509-522, 2002. https://doi.org/10.1109/34.993558
  8. G. Mori, S. Belongie, and J. Malik, "Efficient Shape Matching Using shape Contexts," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No.11, pp.1832-1837, 2005. https://doi.org/10.1109/TPAMI.2005.220
  9. G. Mori, S. Belongie, and J. Malik, "Shape Contexts Enable Efficient Retrieval of Similar Shapes," Proc. IEEE Conf. Computer Vision and Pattern Recognition, Vol.1, pp.723-730, 2001.