• Title/Summary/Keyword: 양중시간 산정

Search Result 9, Processing Time 0.019 seconds

Models for Predicting Hoisting Times of Tower Crane in the High-rise Building Construction (고층건축공사 타워크레인 양중시간 예측모델)

  • Lee Jong-Ryou;Jeon Yong-Seok;Park Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.472-475
    • /
    • 2004
  • The objective of this study is to develope reasonably accurate prediction models to assess hoisting times of tower cranes in the high-rise building construction. The efficient use of the tower crane is critical to achieving the Planned floor cycle time. This research describes the derivation of mathematical models to predict the hoisting times in using a tower crane. 28 factors such as nature of load, characteristics of tower cranes, hoisting movements, operation of cranes, weather conditions and so on is considered to influence hoisting times. In order to develop the predicting hoisting times Correctly, it is divided hoisting upward and downward. Then multiple regression models for predicting supply and return hoisting times have been built up separately.

  • PDF

A computation model for Resource-based Lifting loads of the lift-cars for super high-rise buildings (초고층 건축물 리프트카 양중계획수립을 위한 자원기반의 양중부하 산정 모형)

  • Han, Choong-Hee;Lee, Jun-Bok;Won, Seo-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.135-143
    • /
    • 2012
  • Constructing super-tall buildings is significantly different from constructing general ones in every technological and managerial aspects. Especially lift-car operations planning and management is one of core parts among various management techniques required during the course of the whole construction process of the super-tall buildings because vertical movements of physical resources enormously affect the efficiency of the construction processes. However, discrepancy between lifting plans and actual lifting operations causes serious efficiency problems. As an effort to solve the problem, this research suggests an improved method of estimating resource-based lifting load. The computing model developed as a result of this research facilitates more accurate computation of the total operation time and the maximum lifting capacity of the lift-cars. Further, this research can be developed as a decision support system for the total lift-car operations management.

An Algorithm for Hoisting Time Calculation in Super-tall Building Construction (건설 리프트 가감속 능력을 고려한 양중시간 산정 알고리즘 개발)

  • Cho, Chang-Yeon;Shin, Yoon-Seok;Won, Seo-Kyung;Kim, Jung-Yeol;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.120-129
    • /
    • 2011
  • An installation of the construction lift has a few limitations by many constrains and these have influences on labor productivity, that can be changed by vertical-transportation management. In the super-tall building construction, a management of construction lift operation is one of the most important factor, but existing methodologies depend on skilled practitioners' experiences. And it is true that the expertise resulted by the experiences does not transfer to the next generation. This study is a part of lifting-management simulation development which aims at the optimal construction lift management. A proposed algorithm is focus on lifting time calculation considering an acceleration capability. This research evaluates the result accuracy using comparative analysis on simulation result and field measuring time.

The Development of Simulation Model for Calculating Hoisting Time of Double-Cage Construction Lift in Supertall Building Construction (Double-Cage 건설용 리프트의 양중시간 산정을 위한 시뮬레이션 모델 개발)

  • Kim, Wansoub;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.64-65
    • /
    • 2016
  • According to the recent increase in the height of supertall buildings, construction lift became one of most important equipment for vertical transportation of resources. However, increase in lifting load during peak time in which the resources are concentrated often causes a risk of construction delay. This study suggests a concept of Double-Cage construction lift, which is a lift with two cages attached together allowing transportation of resources on two consecutive work floors simultaneously. The aim of this study is to present a simulation model suitable for calculating hoisting time of Double-Cage construction lift. The proposed model is expected to be utilized when applying Double-cage construction lift for its efficient operation and management.

  • PDF

A Study on the Lifting Progress for Composite Precast Concrete Members of Green Frame (그린 프레임 합성 PC부재의 양중공정 분석 연구)

  • Joo, Jin-Kyu;Kim, Shin-Eun;Lee, Gun-Jea;Kim, Sun-Kuk;Lee, Sung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.34-42
    • /
    • 2012
  • Green frame technology intended to facilitate the remodeling of apartment housing complexes in Korea and extend their service life has been developed. Green frame design is a Rahmen structure using composite precast concrete members and, unlike a bearing-wall structure, lifting and installing structural members accounts for major steps of structural construction. Therefore, if green frame structure construction is to be scheduled appropriately, systematic lifting plan needs to be developed in advance. Development of lifting plan also requires unit lifting process of composite PC members (columns and beams) that consist of green frame to be analyzed first. Therefore, this study attempts to analyze the lifting process of composite PC members used in green frame structure. To that end, lifting procedure and time of composite PC column and beam are estimated and applied to a project case to analyze the lifting cycle of reference floor. Outcomes produced herein will be used as key data for development of lifting plan in subsequent green frame structure construction.

Lifting Work Process Optimization Method in High-rise Building Construction Through Improvement of CYCLONE Modeling Method (CYCLONE 모델링 기법 개선을 통한 초고층 공사의 자재 양중 작업 프로세스 최적화 연구)

  • Hawng, Doowon;Kwon, Okyung;Choi, Yoonki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.58-70
    • /
    • 2017
  • The planning for material lifting operations is one of the key processes in high-rise building construction. Several previous studies have used rough calculations by referring to existing practices or establishing a target value for lifting cycle time or operating rate. Therefore, the purpose of this study is to propose a material lifting process optimization method for reducing the lifting cycle time and increasing the operating rate. In this study, we improve the cyclic operation network (CYCLONE) modeling method that considers the duration and zone information of each work task. This method can be used to hand over work tasks to another crew group in the work process. According to this methodology, this study optimizes the material lifting process, performs a sensitivity analysis, and evaluates the field applicability of the proposed material lifting process optimization method. Therefore, the optimized process was then applied to a high-rise building construction site. The lifting work process time and operating rate for the simulated as - is lifting process data, optimized process data, and field application result data were compared for each lifting height. From this comparison, the effectiveness of the optimization methodology was confirmed.

A Study to Analyze the Assembly Process of Precast Concrete Wall Panels in Beam-Column Frame Apartment Buildings (보-기둥구조 PC공동주택 PC벽체의 조립공정 분석 연구)

  • Kim, Ki-Ho;Lee, Bum-Sik;Kim, Min-Jun;Lee, Dong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.495-506
    • /
    • 2024
  • Unlike reinforced concrete(RC) construction, the primary determinant of construction schedule for precast concrete(PC) apartment buildings is the lifting equipment. To establish a dry process-centric construction schedule, this study analyzes the lifting unit process for core, internal, and external PC wall components, which differ from traditional PC components. By examining the assembly process of these wall types, the study aims to determine the construction cycle for a standard floor frame of a PC apartment building. The findings will serve as foundational data for developing construction schedules for PC apartment buildings utilizing PC walls.

An Analysis Of Optimized Super Tall Building Tower Crane Selection Which Related With Project Construction Period (프로젝트 공사기간과 연계된 극 초고층 타워크레인 최적화 선정에 관한 연구)

  • Cho, Ji-Hun;Cho, Heung-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.131-139
    • /
    • 2009
  • It is critical to select the appropriate type of tower cranes for the construction of super tall buildings. However the selection is often made based on subjective personal experiences due to the lack of historical and analytical data. As a result, planning mistakes and efficiency errors sometimes occur. This research is to develop a system of hoisting analysis for appropriate tower crane selection and to provide a flexible statistical model based on the Burj Dubai project. In addition, this system hassupporting functions that can estimate the target construction period per floor, and a decision-making construction period computation method which is based on the characteristic of the selected tower cranes.

A Study on Estimating Construction Equipment Annual Standard Operating Hours (건설기계 연간표준가동시간 산정에 관한 연구)

  • Lee, Joong-Seok;Huh, Young-Ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.219-224
    • /
    • 2007
  • As use of construction equipment has been increasing continuingly, the proportion of equipment expense to the total construction cost has become higher. However, there is a difference between the equipment expenses section in 'Poom-Sam' and practical data, because 'Poom-sam' does not consider non-working days due to weather conditions, legal holidays and management conditions. Therefore, 'Poom-Sam' does not present a reasonable standard for estimating construction equipment expenses. In this study, to estimate realistic construction equipment operating hours, firstly, construction equipment was classified according to work, and weather conditions, in which each work could not be executed, were established. Then, weather data on Seoul and Busan(2004${\sim}$2006) and legal holidays were analyzed to suggest annual standard operating hours. The annual standard operating hours of earthmoving & excavating, compaction, and drilling equipment was estimated to be 1,430 hours, and lifting equipment, concrete paving equipment, asphalt paving equipment, concrete equipment, and crushing & conveying equipment were estimated to be 2,124 hours, l,156hours, 1,188hours, 1,688hours, and 2,152hours respectively.

  • PDF