• Title/Summary/Keyword: 안전한 기계 학습

Search Result 139, Processing Time 0.021 seconds

Machine Learning-based Rapid Seismic Performance Evaluation for Seismically-deficient Reinforced Concrete Frame (기계학습 기반 지진 취약 철근콘크리트 골조에 대한 신속 내진성능 등급 예측모델 개발 연구)

  • Kang, TaeWook;Kang, Jaedo;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.193-203
    • /
    • 2024
  • Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.

Consideration of the Relationship between Independent Variables for the Estimation of Crack Density (균열밀도 산정을 위한 독립 변수 간의 관계 고찰)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.137-144
    • /
    • 2024
  • The purpose of this paper is to analyze the significance of independent variables in estimating crack density using machine learning algorithms. The algorithms used were random forest and SHAP, with the independent variables being compressional wave velocity, shear wave velocity, porosity, and Poisson's ratio. Rock samples were collected from construction sites and processed into cylindrical forms to facilitate the acquisition of each input property. Artificial weathering was conducted twelve times to obtain values for both independent and dependent variables with multiple features. The application of the two algorithms revealed that porosity is a crucial independent variable in estimating crack density, whereas shear wave velocity has a relatively low impact. These results suggested that the four physical properties set as independent variables were sufficient for estimating crack density. Additionally, they presented a methodology for verifying the appropriateness of the independent variables using algorithms such as random forest and SHAP.

Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition (자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법)

  • Lee, Chang-Gil;Park, Woong-Ki;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.

Decision Supprot System fr Arrival/Departure of Ships in Port by using Enhanced Genetic Programming (개선된 유전적 프로그래밍 기법을 이용한 선박 입출항 의사결정 지원 시스템)

  • Lee, Kyung-Ho;Yeun, Yun-Seog;Rhee, Wook
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.117-127
    • /
    • 2001
  • The Main object of this research is directed to LG Oil company harbor in kwangyang-hang, where various ships ranging from 300 ton to 48000ton DWT use seven berths in the harbor. This harbor suffered from inefficient and unsafe management procedures since it is difficult to set guidelines for arrival and departure of ships according to the weather conditions and the current guidelines dose not offer clear basis of its implications. Therefore, it has long been suggested that these guidelines should be improved. This paper proposes a decision-support system, which can quantitatively decide the possibility of entry or departure on a harbor by analyzing the weather conditions (wind, current, and wave) and taking account of factors such as harbor characteristics, ship characteristics, weight condition, and operator characteristics. This system has been verified using 5$_{th}$ and 7$_{th}$ berth in Kwangyang-hang harbor. Machine learning technique using genetic programming(GP) is introduced to the system to quantitatively decide and produce results about the possibility of entry or arrival, and weighted linear associative memory (WLAM) method is also used to reduce the amount of calculation the GP has to perform. Group of additive genetic programming trees (GAGPT) is also used to improve learning performance by making it easy to find global optimum.mum.

  • PDF

재료 동적영향을 고려한 주냉각재 배관 LBB 적용시 Dynamic Strain Aging의 영향 분석

  • 양준석;박치용;정우태;유기완;김진원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.305-311
    • /
    • 1998
  • 최근들어 고려된 LBB(Leak Before Break) 적용요건중 동적파괴시힘 절차에는 울진 3&4호기 이후 파단전누설개념이 적용되는 배관이 탄소강으로 제작될 경우. 이 배관이 Dynamic Strain Aging (DSA)에 의해 파괴저항치가 감소되지 않는다는 것이 정량적으로 입증되지 않는 한, 동 배관의 파괴 물성치 결정시 DSA의 영향이 고려되어야 하며, DSA 영향을 평가하기 위해서는 동적과괴시험이 수행되어야 함을 요건화 하고 있다. 본 연구에서는 DSA 효과에 의한 파괴저항(J-R) 특성의 저하가차세대원전 원자로냉각재배관 파단전누설개넘(LBB) 적용시 설계 안전여유도에 영향을 미치지 않는 정도임을 평가하는데 있다. 따라서 ASME Section III에서 탄소강으로 분류하고 있는 강종별 파괴인성 변화를 고찰하고, 차세대원전 주냉각재배관 재료인 SA508 Class la의 최대 파괴인성 감소치를 예측하여, 울진 3&4호기에서 측정된 엘보우용 SA516-Gr.70 강의 DSA 영향 평가 결과와 비교 분석하여 차세대원전 주냉각재배관의 DSA영향을 평가하였다. 도출된 결론으로는 DSA 영향을 고려한 SA508 Class la의 J 및 dJ/dA 값은 극히 보수적으로 추정할 때 50% 이상 감소하는 것으로 예측된다. 이러한 DSA 영향을 고려하였을 경우 배관재 모재의 파괴인성치는 Weld-SAW의 J/T 값 수준으로 감소하였다. 그러나 현 LRB 해석이 가장 낮은 J/T값을 갖는 Weld-SAW Auto의 균열길이 2a인 J/T선도에 의거하여 수행되고 있다는 점을 고려한다면 비록 DSA가 배관재에 영향을 주는 가장 보수적인 값(J 및 dJ/dA값을 50% 이상)을 사용한다고 하더라도 차세대원전 LBB 적용에 문제가 되지 않음을 알 수 있다. 즉 차세대원자로 주냉각재배관에 LBB를 적용하는데는 DSA 영향은 상대적으로 중요하지 않다는 결론을 얻었다. 표면에 수소화물이 농축되어 있는 hydride layer가 형성됨을 관찰하였으며 ~5,000ppm 이상의 경우에는 수소화물의 방향성이 random하였으며 특히, ZIRLO$^{TM}$ 시편의 경우에서는 원주방향으로 길게 이어진 수소화물과 기계적 성질에 치명적인 반경방향의 수소화물이 평행하게 배열된 것을 관찰하였다.하였을 때는 Li$_2$O의 첨가에 의해 치밀화가 주로 일어났고, 반면에 $N_2$-7vol.%H$_2$ 분위기에서 소결하면 Li$_2$O의 첨가에 의해 작은 기공은 소멸되고 큰 기공이 생성되었다.지나치게 모국어의 영향만 강조하고 다른 요인들에 대해서는 다분히 추상적인 언급으로 끝났지만 이 분석을 통 해서 배경어, 목표어, 특히 중간규칙의 역할이 괄목할 만한 것임을 가시적으로 관찰할 수 있 다. 이와 같은 오류분석 방법은 학습자의 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\ulcorner 본 논문에서는 표면적 형태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X^{0}$ elements)로 가정한다. 즉, [+wh] 의미의 겹의문사는 동일한 구성요 소를 지닌 병렬적 합성어([$[W1]_{XO-}$ $[W1]_{XO}$ ]$_{XO}$)로

  • PDF

A Study on Abalone Young Shells Counting System using Machine Vision (머신비전을 이용한 전복 치패 계수에 관한 연구)

  • Park, Kyung-min;Ahn, Byeong-Won;Park, Young-San;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.415-420
    • /
    • 2017
  • In this paper, an algorithm for object counting via a conveyor system using machine vision is suggested. Object counting systems using image processing have been applied in a variety of industries for such purposes as measuring floating populations and traffic volume, etc. The methods of object counting mainly used involve template matching and machine learning for detecting and tracking. However, operational time for these methods should be short for detecting objects on quickly moving conveyor belts. To provide this characteristic, this algorithm for image processing is a region-based method. In this experiment, we counted young abalone shells that are similar in shape, size and color. We applied a characteristic conveyor system that operated in one direction. It obtained information on objects in the region of interest by comparing a second frame that continuously changed according to the information obtained with reference to objects in the first region. Objects were counted if the information between the first and second images matched. This count was exact when young shells were evenly spaced without overlap and missed objects were calculated using size information when objects moved without extra space. The proposed algorithm can be applied for various object counting controls on conveyor systems.

A Method of Detecting the Aggressive Driving of Elderly Driver (노인 운전자의 공격적인 운전 상태 검출 기법)

  • Koh, Dong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.537-542
    • /
    • 2017
  • Aggressive driving is a major cause of car accidents. Previous studies have mainly analyzed young driver's aggressive driving tendency, yet they were only done through pure clustering or classification technique of machine learning. However, since elderly people have different driving habits due to their fragile physical conditions, it is necessary to develop a new method such as enhancing the characteristics of driving data to properly analyze aggressive driving of elderly drivers. In this study, acceleration data collected from a smartphone of a driving vehicle is analyzed by a newly proposed ECA(Enhanced Clustering method for Acceleration data) technique, coupled with a conventional clustering technique (K-means Clustering, Expectation-maximization algorithm). ECA selects high-intensity data among the data of the cluster group detected through K-means and EM in all of the subjects' data and models the characteristic data through the scaled value. Using this method, the aggressive driving data of all youth and elderly experiment participants were collected, unlike the pure clustering method. We further found that the K-means clustering has higher detection efficiency than EM method. Also, the results of K-means clustering demonstrate that a young driver has a driving strength 1.29 times higher than that of an elderly driver. In conclusion, the proposed method of our research is able to detect aggressive driving maneuvers from data of the elderly having low operating intensity. The proposed method is able to construct a customized safe driving system for the elderly driver. In the future, it will be possible to detect abnormal driving conditions and to use the collected data for early warning to drivers.

Development of Ship Valuation Model by Neural Network (신경망기법을 활용한 선박 가치평가 모델 개발)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • The purpose of this study is to develop the ship valuation model by utilizing the neural network model. The target of the valuation was secondhand VLCC. The variables were set as major factors inducing changes in the value of ship through prior research, and the corresponding data were collected on a monthly basis from January 2000 to August 2020. To determine the stability of subsequent variables, a multi-collinearity test was carried out and finally the research structure was designed by selecting six independent variables and one dependent variable. Based on this structure, a total of nine simulation models were designed using linear regression, neural network regression, and random forest algorithm. In addition, the accuracy of the evaluation results are improved through comparative verification between each model. As a result of the evaluation, it was found that the most accurate when the neural network regression model, which consist of a hidden layer composed of two layers, was simulated through comparison with actual VLCC values. The possible implications of this study first, creative research in terms of applying neural network model to ship valuation; this deviates from the existing formalized evaluation techniques. Second, the objectivity of research results was enhanced from a dynamic perspective by analyzing and predicting the factors of changes in the shipping. market.

Preliminary Study on the Reproduction of Dissolved Oxygen Concentration in Jinhae Bay Based on Deep Learning Model (딥러닝 모형 기반 진해만 용존산소농도 재현을 위한 기초연구)

  • Park, Seongsik;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.193-200
    • /
    • 2022
  • We conducted a case study to determine the optimal model parameters and predictors of Long Short-Term Memory (LSTM) for the reproduction of dissolved oxygen (DO) concentration in Jinhae Bay. The model parameter case study indicated the lowest accuracy when the Hidden node=10, Epoch=100. This was caused by underfitting of machine learning. The accuracy increased as the Hidden node and Epoch increased. The accuracy was the highest when the Hidden node=80 and Epoch=100 with R2=0.99. In the bottom DO reproduction of Step 1 of the predictors case study, accuracy was highest when the water temperature was used as a predictor with R2=0.81. In Step 2, The R2 value increased up to 0.92 when the water temperature and SiO2 were used as a predictor. This was caused by a high correlation between the bottom DO and SiO2 concentrations. Consequently, we determined the optimal model parameters and predictors of LSTM for the reproduction of DO concentration in Jinhae Bay.

A Method of Machine Learning-based Defective Health Functional Food Detection System for Efficient Inspection of Imported Food (효율적 수입식품 검사를 위한 머신러닝 기반 부적합 건강기능식품 탐지 방법)

  • Lee, Kyoungsu;Bak, Yerin;Shin, Yoonjong;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.139-159
    • /
    • 2022
  • As interest in health functional foods has increased since COVID-19, the importance of imported food safety inspections is growing. However, in contrast to the annual increase in imports of health functional foods, the budget and manpower required for inspections for import and export are reaching their limit. Hence, the purpose of this study is to propose a machine learning model that efficiently detects unsuitable food suitable for the characteristics of data possessed by government offices on imported food. First, the components of food import/export inspections data that affect the judgment of nonconformity were examined and derived variables were newly created. Second, in order to select features for the machine learning, class imbalance and nonlinearity were considered when performing exploratory analysis on imported food-related data. Third, we try to compare the performance and interpretability of each model by applying various machine learning techniques. In particular, the ensemble model was the best, and it was confirmed that the derived variables and models proposed in this study can be helpful to the system used in import/export inspections.