Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.4
s.304
/
pp.1-12
/
2005
Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. This paper presents a new algorithm for robust registration of the images acquired by multiple sensors having different modalities; the EO (electro-optic) and IR(infrared) ones in the paper. The two feature-based and intensity-based approaches are usually possible for image registration. In the former selection of accurate common features is crucial for high performance, but features in the EO image are often not the same as those in the R image. Hence, this approach is inadequate to register the E0/IR images. In the latter normalized mutual Information (nHr) has been widely used as a similarity measure due to its high accuracy and robustness, and NMI-based image registration methods assume that statistical correlation between two images should be global. Unfortunately, since we find out that EO and IR images don't often satisfy this assumption, registration accuracy is not high enough to apply to some applications. In this paper, we propose a two-stage NMI-based registration method based on the analysis of statistical correlation between E0/1R images. In the first stage, for robust registration, we propose two preprocessing schemes: extraction of statistically correlated regions (ESCR) and enhancement of statistical correlation by filtering (ESCF). For each image, ESCR automatically extracts the regions that are highly correlated to the corresponding regions in the other image. And ESCF adaptively filters out each image to enhance statistical correlation between them. In the second stage, two output images are registered by using NMI-based algorithm. The proposed method provides prospective results for various E0/1R sensor image pairs in terms of accuracy, robustness, and speed.
Stereo camera is drawing attention as an essential sensor for future intelligence robot system since it has the advantage of acquiring not only distance but also other additive information for an object. However, it cannot match correlated point on target image for low textured region or periodic patterned region such as wall of building or room. In this paper, we propose a stereo matching technique that increase the matching performance by fusing belief propagation stereo matching algorithm and local distance measurements of 2D-laser range finder in order to overcome this kind of limitation. The proposed technique adds laser measurements by referring quad-tree based segment information on to the local-evidence of belief propagation stereo matching algorithm, and calculates compatibility function by reflecting over-segmented information. Experimental results of the proposed method using simulation and real test images show that the distance information for some low textured region can be acquired and the discontinuity of depth information is preserved by using segmentation information.
클라우드 사용이 보편화 되고 확대됨에 따라, 서비스를 유연하게 확장 및 축소하여 신속하게 시장의 수요에 대응할 수 있는 PaaS(Platform-as-a-Service) 형태의 서비스가 많은 기업에서 각광받고 있다. 그리고 이러한 PaaS 형 서비스의 핵심이 되는 기술인 컨테이너(Container)와 컨테이너 관리를 효율화 해주는 쿠버네티스(Kubernetes)가 실질적인 표준으로 사용되고 있다. 이때 쿠버네티스 기반의 환경에서 서비스 어플리케이션은 다양한 구성사례가 존재하나, DB 는 아직 안정성 및 데이터 정합성 등을 이유로 베어메탈(Baremetal)이나 VM(Virtual Machine)을 기반으로 구성하고 있는 상황이다. 그러나, 인프라 구성 및 운영에 있어서도 파드(Pod) 형태의 DB 구성은 베어메탈 및 VM 대비 장점이 존재한다고 생각하여 본 실험을 수행하였다. 본 논문에서는 서비스 응답시간 및 자원 사용의 효율성 측면에서 VM 기반의 DB 와 쿠버네티스 파드 기반의 DB 에 각각 트래픽을 발생시켜서 비교한 결과와 시사점을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.359-361
/
2012
본 논문은 T2강조 MR 영상과 확산강조 MR 영상의 강체 정합을 통해 크기, 위치, 회전 변환 왜곡을 보정하여 자궁내막암의 위치를 자동으로 찾는 방법을 제안한다. 영상해상도와 밝기값 분포가 서로 다른 두 영상간 정합의 정확성을 향상시키기 위해 잡음을 제거하고 두 영상의 밝기값 신호 분포의 유사성을 강화시킨다. 유사성이 향상된 두 영상의 크기, 위치, 회전 변환 왜곡을 보정하기 위해 정규화 상호정보를 최대화 하는 강체 정합을 반복적으로 수행한다. 정합된 영상에서 악성 종양을 쉽게 판별 할 수 있도록 현상확상계수지도를 컬러맵으로 생성하여 T2강조 MR 영상에서 얻은 종양의 후보군에 매핑하여 T2강조 MR 영상과 융합한다. 실험을 위하여 최적화 반복 과정에 따른 정규화 상호정보 수치 수렴 과정을 확인하고, 융합 후 종양 영역이 매핑되는 것을 육안평가를 통해 분석하였다. 제안방법을 통하여 T2강조 MR 영상과 확산강조 MR 영상을 융합함으로써 종양의 위치를 자동으로 파악하고 자궁내막암의 병기를 확정하는 용도로 활용할 수 있다.
In this paper, a fast 3D model extraction algorithm with an enhanced PBIL of preserving depth consistency is proposed for the extraction of 3D depth information from 2D images. Evolutionary computation algorithms are efficient search methods based on natural selection and population genetics. 2D disparity maps acquired by conventional matching algorithms do not match well with the original image profile in disparity edge regions because of the loss of fine and precise information in the regions. Therefore, in order to decrease the imprecision of disparity values and increase the quality of matching, a compact genetic algorithm is adapted for matching environments, and the adaptive window, which is controlled by the complexity of neighbor disparities in an abrupt disparity point is used. As the result, the proposed algorithm showed more correct and precise disparities were obtained than those by conventional matching methods with relaxation scheme.
Journal of the Korea Society of Computer and Information
/
v.11
no.4
s.42
/
pp.77-85
/
2006
There is the spatial correlation of the video sequence between the motion vector of current blocks. In this paper, we propose the enhanced fast block matching algorithm using the spatial correlation of the video sequence and the center-biased properly of motion vectors. The proposed algorithm determines an exact motion vector using the predicted motion vector from the adjacent macro blocks of the current frame and the Cross-Hexagonal search pattern. From the of experimental results, we can see that our proposed algorithm outperforms both the prediction search algorithm (NNS) and the fast block matching algorithm (CHS) in terms of the search speed and the coded video's quality. Using our algorithm, we can improve the search speed by up to $0.1{\sim}38%$ and also diminish the PSNR (Peak Signal Noise Ratio) by at nst $0.05{\sim}2.5dB$, thereby improving the video qualify.
Recently, issues on the internet searching of image information through various multimedia databases have drawn an tremendous attention and several researches on image information retrieval methods are on progress. By incorporating wavelet transform and correlation matrixes, we propose a novel and highly efficient feature vector extraction algorithm that has an capability of a robust similarity matching. The simulation results have yielded a faster and highly accurate candidate image retrieval performance in comparison to those of the conventional algorithms. Such an improved performance can be obtained because the used feature vectors were compressed to 256:1 while the correlation matrixes are incorporated to provide a fuel information for the better matching.
Conventional research on image restoration has focused on restoring degraded images resulting from image formation, storage and communication, mainly in the signal processing field. Related research on recovering original image information of caption regions includes a method using BMA(block matching algorithm). The method has problem with frequent incorrect matching and propagating the errors by incorrect matching. Moreover, it is impossible to recover the frames between two scene changes when scene changes occur more than twice. In this paper, we propose a method for recovering original images using EBMA(Extended Block Matching Algorithm) and a region compensation method. To use it in original image recovery, the method extracts a priori knowledge such as information about scene changes, camera motion and caption regions. The method decides the direction of recovery using the extracted caption information(the start and end frames of a caption) and scene change information. According to the direction of recovery, the recovery is performed in units of character components using EBMA and the region compensation method. Experimental results show that EBMA results in good recovery regardless of the speed of moving object and complexity of background in video. The region compensation method recovered original images successfully, when there is no information about the original image to refer to.
영상 압축 분야에서는 데이터 압축이 필수적인데, 이때 가장 많은 데이터 중복성을 가지고 있는 시간적 중복성은 이전 프레임의 데이터를 이용하여 움직임 추정과 움직임 보상을 수행하고 추정된 움직임 벡터에 의해서 보상된 영상과 원 영상과의 차 신호를 부호화하여 데이터를 압축한다. 움직임 추정과 움직임 보상기법은 비디오 영상압축에서 중요한 역할을 하지만 많은 계산량으로 인하여 실시간 응용이나 고해상도 응용에 많은 어려움을 가지고 있다. 이러한 문제점을 해결하기 위하여 여러 가지 고속정합 알고리즘들과 하드웨어 기법들이 개발되었다. 특히 다이아몬드 탐색 기법은 계산량도 줄이고 안정된 복원 영상 화질을 유지하고 있다. 본 논문에서는 기존의 다이아몬드 탐색 기법의 문제점을 개선한 수정된 다이아몬드 탐색 기법을 제안하고 성능을 평가한다. 실험에 의하여 제안된 기법은 기존의 다이아몬드 탐색 기법과 비교하여 화질 면에서나 속도 면에서 모두 좋은 결과를 가져왔다.
Journal of the Korea Society of Computer and Information
/
v.17
no.6
/
pp.37-48
/
2012
Image registration is a process to establish the spatial correspondence between the images of same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we propose an effective registration method for images acquired by multi-sensors, such as EO (electro-optic) and IR (infrared) sensors. Image registration is achieved by extracting features and finding the correspondence between features in each input images. In the recent research, the multi-sensor image registration method that finds corresponding features by exploiting NMI (Normalized Mutual Information) was proposed. Conventional NMI-based image registration methods assume that the statistical correlation between two images should be global, however images from EO and IR sensors often cannot satisfy this assumption. Therefore the registration performance of conventional method may not be sufficient for some practical applications because of the low accuracy of corresponding feature points. The proposed method improves the accuracy of corresponding feature points by combining the gradient orientation as spatial information along with NMI attributes and provides more accurate and robust registration performance. Representative experimental results prove the effectiveness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.